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Preface

It seems to me that the experimental study of scattered radiation, in
particular from light atoms, should get more attention, since along
this way it should be possible to determine the arrangement of the

electrons in the atoms
P. Debye (1915)

An accurate set of nuclear coordinates and a detailed map of the
electron density can be obtained, by X-ray diffraction, only jointly and

simultaneously, never separately or independently
F. L. Hirshfeld (1992)

The ability to measure the experimental charge distribution in crystals from
the intensities of the scattered X-rays was realized almost immediately after
the discovery of X-ray diffraction. Notwithstanding this early recognition, the
technical developments of the 1960s and beyond, which occurred in diffractometry,
automation of data collection, low-temperature techniques, and computers, were
needed to achieve a breakthrough in the method. The accurate crystallographic
methods developed during the past decades led not only to a much better precision
in atomic coordinates, but also to crucial information on the charge distribution in
crystals. This experimentally obtained distribution can be compared directly with
theoretical results, and can be used to derive other physical properties, such as
electrostatic moments, the electrostatic potential, and lattice energies, which are
accessible by spectroscopic and thermodynamic measurements. This broad inter-
face with other physical sciences is one of the most appealing aspects of the field.

The aim of this volume is to provide the background necessary for interpreta-
tion of the results of accurate crystallographic methods, and to present the concepts
to a wider community of nonspecialized scientists. Though a number of excellent
conference proceedings exist, there is no single text summarizing the subject. This
text is not meant as a comprehensive review of the existing literature; experimental
results are presented as an illustration of principles and methods. While this leaves
out a great many valuable studies available in the literature, the restraint is
unavoidable if the text is to be of manageable size.

Experimental methods have not been covered, as they are still developing
rapidly. New developments, in particular the advent of third-generation synchro-
tron sources combined with parallel data collection methods and new interpreta-
tive software packages, are bound to further enhance the scope of the field. It is
hoped that this text will serve to stimulate its continuing development.

I am grateful to the many colleagues who have commented on the contents



vt Preface

of this volume, and especially to Dr. Zhengwei Su who played a key role in the
development of the formalisms described in chapters 7-9 and appendixes D, E,
G, and H, and who has pointed out many errors and omissions in earlier versions
of the text. Others, including D. Feil, T. R. Furlani, C. Lecomte, V. Petricek, and
S. Price provided additional valuable suggestions and corrections. I would like to
thank S. Priore-Fensore for her outstanding dedication, which made the comple-
tion of the manuscript possible, and 1. Novozhilova for assistance in the final
stages of this project.

Philip Coppens
Buffalo, NY
November 1996
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Scattering of X-rays and Neutrons

1.1 QOutline of this Chapter

This chapter starts with a discussion of the classical treatment of X-ray scattering,
followed by a brief overview of the quantum-mechanical theory in the first Born
approximation. The scattering of a periodic arrangement is derived by considering
the crystal as a convolution of the unit cell contents and a periodic lattice. The
atomic description of the charge density, which is the basis for structure analysis,
is introduced. The origin of resonance anomalous scattering is discussed. While
its effect must be accounted for before charge densities can be derived from the
X-ray scattering amplitudes, resonance scattering itself can give invaluable inform-
ation on the electronic states of the resonating atoms. The final section of this
chapter deals with the scattering of neutrons by atomic nuclei. Nuclear neutron
scattering is independent of the distribution of the electrons, and can provide
atomic positions and thermal amplitudes unbiased by the bonding effects which
are the subject of this book.

1.2 introduction to the Theory of X-ray Scattering
1.2.1 Classical Treatment of X-ray Scattering

In the classical theory of scattering (Cohen-Tannoudji et al. 1977, James 1982),
atoms are considered to scatter as dipole oscillators with definite natural
frequencies. They undergo harmonic vibrations in the electromagnetic field, and
emit radiation as a result of the oscillations.

The equation of motion for a single harmonic oscillators of mass m, and force

3



4 X-ray Charge Densities and Chemical Bonding
constant k, (k, = mw?), is (following Newton) given by
mx + k,x =0 (1.1

where X is the second time derivative of the displacement x. When the oscillator
is a particle with charge —e, exposed to an oscillating electric field E = Ee”,
one obtains
. eE,
X+ wix = el (1.2)
m

When the oscillation is damped, with damping factor k, and damping kx
proportional to the speed of motion X, one obtains

i+k£+w5x=e~123eim' (1.3)
m

The corresponding time-dependent value of the damped oscillating dipole equals

2 iwt
e E,e
M=ex=——

m w? — w? — ik (14)

as can be verified by direct substitution of Eq. (1.4) into Eq. (1.3).

The oscillating dipole is a source of electromagnetic radiation of the same
frequency, polarized in the direction of the oscillations. At large distances, the
wave is spherical. According to the electromagnetic theory, the resulting electric
vector at a point in the equatorial plane of the dipole is w?/r|c? times the moment
of the dipole at time ¢ — [r|/c. The amplitude of the spherically scattered wave at
unit distance in the equatorial plane is therefore

e? w’E,
4 mc? w? — w? — ikw (1.32)

The scattering of the free electron for E, = 1 is obtained from this expression
by setting both the force constant w, and the damping factor k equal to zero,
which gives

Afreeeleclron = _ez/mcz (ISb)

The quantity e*/mc? is the scattering amplitude of the classical electron, denoted
by the symbol r,, and generally used as the unit of electron scattering. Its numerical
value equals 2.818-107'* cm = 2.818 fermi.!

For an assembly of several free point electrons, interference occurs between
radiation scattered by different centers. If the incident and diffracted beams are
defined by two unit vectors, s, and s, respectively (Fig. 1.1), the phase difference
of the radiation scattered by two points, separated by the vector r, equals 2nS-r,
where S is the scattering vector, equal to (s — sy)/4. Vector S bisects s and s, and
has the length 2sin 6/4. In the physics literature, an alternative notion is
commonly used. The incident and diffracted beams are defined by the vectors k

' If physical constants in SI units are used in the evaluation of e*/mc?, the result has to be divided by
the factor 4x times the permittivity of free space 4mey = 1.1126265-107'°C2 N 'm~%
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FIG. 1.1 Geometry of scattering

and ko, of length 27/4, such that the scattering vector K = k — k, has a magnitude
|K| + 47 sin 0/4.

For the scattering by two point electrons at distance r, using the rules for
addition of coherent waves, we get per unit incident amplitude E,

. &2
A=+ (1.6)
mc

in which the negative sign of Eq. (1.5b) has been factored out.

For a continuous electron distribution p(r), the summation over waves of
different phase must be replaced by an integration leading to a diffraction
amplitude:

AS) = Jp(r) exp(2niS-r) dr (1.7)

Thus, for @ » w, and w? >» ikw, the amplitude of scattering is the Fourier
transform of the electron density. This important result is confirmed by the
first-order quantum-mechanical treatment discussed in the next section. When
W = w;, both the amplitude and the phase of the scattered radiation depend on
the frequency.

1.2.2 Quantum-Mechanical Treatment: The First
Born Approximation

The treatment of the interaction of a quantum-mechanical system with radiation
is described in detail in the literature (Feil 1975; Cohen-Tannoudji et al. 1977;
Biume 1985, 1994). Only an outline will be given here.

The Hamiltonian H of a system in a radiation field, in the absence of
interaction with the field and a perturbation Hamiltonian H’ describing the
interaction with the field, is given by

H = H 4. + H, + H’ (1.8)

The interaction of a system with the electromagnetic radiation leads to a
time-dependence of the wave function y, which follows from the time-dependent
Schrédinger equation

adiation

ih dy

1.9
2 dt (19)

Hy =
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3 Q)
d’o \ (IJn
) ’ FIG. 1.2 Feynman diagrams describing (a) elastic
E(_) ¢o ko "bo scattering, (b) inelastic scattering. Source: Feil

(a) (b) (1975).

The time-dependent wave function is described by
¥ = cu(OYm(x, 1) + c,(OPu(x, 1) (1.10a)

in which the x values are the coordinates of the scattering particles, and the
transition is from an initial state y,, to a final state ,. The wave function
describes both the scattering assembly M and the radiation field; in shorthand
notation,

(V) = Wnm, 00 Lios Ok, (1.10b)

for the initial-state wave function and an incident photon with propagation vector
ko(lk| = 2nr/4).

In the first Born approximation, the interaction between the photons and the
scattering system is weak and no excited states are involved in the el:stic scattering
process. Furthermore, there is no rescattering of the scattered wave, that is, the
single-scattering approximation is valid. In the Feynman diagrams (Fig. 1.2), there
is only one point of interaction for first-Born-approximation processes.

The interaction Hamiltonian contains the operator A, corresponding to the
vector potential A of the electromagnetic field.? Excluding magnetic scattering,
the interaction Hamiltonian is given by
qz . qz 22

(A-p) +

1.11
2mc? 2m (11D

A =

in which g is the charge of the scattering particle, and m is its mass. Note that
scattering by the heavier nuclei is orders of magnitude smaller than the scattering
by the electrons. Vector p is the momentum operator equal to (h/2ni)V.

The second term in Eq. (1.11) is the origin of the scattering in the first Born
approximation. It leads to an amplitude for the scattering of photons with
propagation vector k, into photons with vector k equal to

F = C{y,| exp (K-D)|y,) (1.12)

with K = k — k,. In this expression, ¢ is the wave function describing the
assembly only, and C is a proportionality constant which includes the polarization
factor.® The positive sign of the exponent in Eq. (1.12) is the convention followed
in crystallography (James 1982) and adopted in this text. To avoid confusion, it

% The electric field E and the magnetic field B are related to the vector potential by E = —¢A/ét and
B =V x A. See, for example, Jackson (1977).
3 Polarization is explicitly included in the treatment in section 1.3.2.
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should be pointed out that in the physics literature the plane-wave expression
exp (—iK-r) is used.

For independently scattering systems, without specific phase relation, we get
for the total intensity in the scattered beam

Lo = C? Y Y, exp (K D)y, >° (1.13)

The integration is over the coordinates of all the electrons, and the wave function
 describes all particles of the scattering system.

For elastic scattering, illustrated by Fig. 1.2(a), the initial and final states are
the same, that is, n = m. For a system of electrons, represented by a many-electron
wave function, we obtain in the approximation that the N electrons are scattering

independently:
N

Y exp (iK-r)

i=1

2
Icoherent, elastic(K) = C2<¢0 lp0> (114)

As the electrons are indistinguishable in the antisymmetrized wave function,
the one-electron scattering can be obtained by integration over all coordinates
but those of the jth electron. Summation over all equivalent electrons then leads to

2
jp(r) exp (iK'r)dr
where p(r) is the electron distribution. Or, for the scattering amplitude A(K),
AK) = f p(r) exp (iK-r) dr = F[p(r)] (1.16)

where F is the Fourier transform operator. This result is equivalent to the classical
expression (1.7). It is sometimes referred to as the form-factor approximation, and
is based on the assumption that the particles scatter independently of each other.
This assumption neglects binding effects among the electrons and between
electrons and nucleons, which become important as very low and very high
energies (Kissel et al. 1995).

(1.15)

Icoherem‘ elastic(K) =

1.2.3 Scattering by a Periodic Crystal

According to Eq. (1.16), the elastic coherent X-ray scattering amplitude is the
Fourier transform of the electron density in the crystal. The crystal is a
three-dimensional periodic function described by the convolution of the unit cell
density and the periodic translation lattice. For an infinitely extended lattice,

pcrystal(r) = Z Z Z Punit Ce][(l‘)*é(l‘ —na —mb — pc) (1.17)

n m p
where n, m, and p are integers, and ¢ is the Dirac delta function. Equation (1.16)
states that the scattering of the crystal is the Fourier transform of pyqa(r).
According to the Fourier convolution theorem, the Fourier transform of a
convolution of two functions is the product of the Fourier transform of the
individual functions, or

AS) = F{p®} = Y3 Y. F{puniccen(t)} F{5(r — na — mb — pe)}  (1.18)
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The Fourier transform of the direct space ¢ function is a & function in
reciprocal space, representing the reciprocal lattice. We thus obtain

A®) = Flpumear®) LT T 68 — ha* — kb* —le*)  (1.19)
h k1

It follows from Eq. (1.19) that a crystal scatters with an amplitude proportional
10 F{punircen(r)} in directions defined by the scattering vectors

S = H = ha* + kb* + Ic* (1.20)
where the reciprocal axes a};_, ; are defined by

a;af =9 (L.21)

Thus, the scattering of a periodic lattice occurs in discrete directions. The
larger the translation vectors defining the lattice, the smaller a¥,_; ;, and the
more closely spaced the diffracted beams. This inverse relationship is a charac-
teristic property of the Fourier transform operation. The scattering vectors
terminate at the points of the reciprocal lattice with basis vectors a¥,. ;, defined
by Eq. (1.21).

The Fourier transform of the unit cell density F{p;.y(r)} is referred to as
the structure factor F:

FH) = F{p pitcen(™} = J p(r) exp 2niH-r) dr (1.22)
unit cell

Expression (1.19) is valid for a crystal with a very large number of unit cells,
for which particle-size broadening is negligible, as indicated by the infinitely sharp
¢ function. However, a finite lattice is the mathematical product of the infinite
lattice used in the derivation of Eq. (1.19) and a three-dimensional step function
describing the shape of the crystal. Using again the Fourier convolution theorem,
which states that the Fourier transform of a product is the convolution of the
Fourier transforms of the individual functions, shows that in the scattering
expression (1.19), the periodic delta function is to be convoluted with the Fourier
transform of a three-dimensional step function describing the crystal.

For simplicity, we treat the one-dimensional case. The step function f(x), for
a crystal of N unit cells in the a direction, is given by f(x) = 1 for —~Na/2 < x <
Na/2, and f(x) = 0 elsewhere. The Fourier transform of this function is

FLiG = T (123

and is illustrated in Fig. 1.3. The value of ﬁ[f(x)] has its maximum equal to Na
at § = 0; that is, for a three-dimensional crystal, it is proportional to the crystal’s
volume. The first zero of F[ f(x)] occurs when tNSa = +n, or NSa = + 1. Since
the diffraction maxima at H = ha* + kb* + Ic* are convoluted with Eq. (1.23),
subsidiary maxima will occur. They become negligibly small for larger N. The
net effect of the finite crystal size is then that each diffraction maximum is
broadened. This is particle-size broadening, which dominates the width of the
diffracted beams for very small particle sizes of the order of 1000 A or less. The
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FIG. 1.3 (a) The shape transform of a one-dimensional crystal, and (b) the effect of a factor
2 increase in particle size.

well-known Scherrer equation for the particle-size broadening B,
0.944
cos 6

B(26) = (1.24)

follows from this theory (Warren 1967).

1.2.4 The Structure Factor Formalism in Terms of
Atomic Densities

The structure factor F can be simplified by approximating the unit cell density
distribution by a summation over atomic densities, each centered at the nuclear
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position r;. In mathematical terms, the unit cell density can then be formulated as
a sum over the convolution of the atomic densities and delta functions centered
at the nuclear positions:
Puniteen(t) = X Pj(l')*é(l' - rj) (1.25)
To obtain the corresponding structure factor expression, the Fourier convolu-
tion theorem is applied, or

F(H) = F{punitcell(r)}
= f Y p{0)*6(r —r;) exp (2niH 1) dr
unit cell

=Y f;(H)exp 2niH 1)) (1.26)
in which the atomic scattering factor f(H) is the Fourier transform of the atomic
density p,(r) at H. In the approximation common in structure determination, the
atomic densities are assumed to be spherically symmetric, with a radial dependence
equal to that of the theoretical ground state atom. This is the independent-atom
model, abbreviated as IAM.

The Fourier transform of the spherical atomic density is particularly simple.
One can select S to lie along the z axis of the spherical polar coordinate system
(Fig. 1.4), in which case S:r = Srcos &. If p(r) is the radial density function of
the spherically symmetric atom,

fi(S) = j p; €Xp 2miS+r dr
atom

4 2n ©
= —f I J p;(r) exp (2miSr cos $)r? sin & dr dd dp  (1.27)
3=0Jd=0Jr=0
Performing the integration over ¢ gives
£(S)=2n J J p;(r) exp (2niSr cos $)r? sin & dr dd
$=0Jr=0

__* J J p,(r) exp (2iSr cos 8)r dr d(2niSr cos 9)
2niSr Jy=0 J,=0

45

do

FiG. 1.4 Integration of the scattering over the density of a spherical atom.
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FIG. 1.5 Spherical atom scattering factors for the isoelectronic F~ and Na™ ions.

Finally, integration over & gives the desired result,

£(S) = f drripy(r) SO f amrp(rjo dr = oy (1.28)
0 2nSr 0
where 4nr?p;(r) is the probability that the electron is found in the shell bounded
by spheres with radii r and r + dr. The term j, is known as a zero-order spherical
Bessel function (see, e.g., Arfken 1970), and the integral in Eq. (1.27), labeled {j,>,
is referred to as the Fourier—Bessel transform of the atomic density. For an atomic
density expressed as a sum over exponential functions, Eq. (1.28) can be expressed
in closed form as discussed in chapter 3. The appropriate expressions are listed in
appendix G.

Scattering factors for the isoelectronic F~ and Na™* ions are shown in Fig.
1.5. The inverse relationship between direct space and reciprocal space is evident,
as the more compact Na* ion has the more “diffuse” scattering factor. For the
same reason, the scattering of the atomic valence electrons is concentrated in the
low-order region of reciprocal space, while the core electron scattering persists to
high values of sin 6/4. This is the basis for the high-order refinement method, in
which only high-order data are used to reduce the bias in the structural parameters
due to deviations from the IAM. The high-order refinement method is further
discussed in chapter 3.

1.3 Resonance Scattering of X-rays
1.3.1 Classical Treatment

The classical scattering amplitude of an electron was derived in section 1.2.1 as

S S (1.5a)
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The amplitude A can be separated into real and imaginary parts by multiplica-
tion of both the numerator and the denominator by w? — w? — ikw. For unit
value of E,, in units of —e/mc?, the result is

w?(w? — wd) ik
(w? — @) + k*0w®  (0? — 0?)? + kw?

0=

(1.29)

The anomalous contribution to the real part of the scattering amplitude can
be separated by subtraction of the classical Thompson scattering, —e?/mc?, from
the first term of Eq. (1.29) to give

o] - k) - = o]

~ ’
(0? — w2 + kKw? o — o?

Ay(anomalous, real) = for small k. (1.30)

According to Egs. (1.29) and (1.30), the real part of the resonance scattering
amplitude of an oscillator is negative below the absorption edge, where w < w,,
and positive above the edge, while the imaginary part of the amplitude is negative
everywhere (i.c., has a sign opposite to that of the classical electron scattering).
This conclusion is confirmed by more advanced theory and by experiment, except
in the vicinity of the absorption edges, where the behavior is more complicated
than can be accounted for by the simple classical theory.

Including resonance effects, the atomic scattering factor for a many-electron
atom is written as

J(S, @) = fo(S) + ['(S, w) + if (S, w) (1.31)

where the last two terms describe the real and imaginary parts of the resonance
contribution, respectively. In the classical theory, the electron scattering for each
electron shell is multiplied by the oscillator strength g(s) of the shell. Separation
of the real and imaginary parts in units of scattering of the classical electron, leads to

w?(w? — w?)

fot+ [ = Z g(s) @ — ol + 0 (1.32)
and
, kw3
fr= —29(3) &~ o 1 e (1.33)

These equations neglect the angle dependence of the atomic scattering and
thus assume that the atomic dimensions are small relative to the wavelength of
the photons. This is a good approximation for the dimensions of the atomic shells
and the resonance wavelengths of the corresponding absorption edges.

For values of w > w,, that is, for negligible effect of the resonance, the real
contribution fy 4+ f =3, ¢g(s), and f” — 0. Thus, the real contribution becomes
equal to the oscillator strength. As discussed by James (1982), there is a close
correspondence between the classical oscillator strengths and the matrix element
of quantum-mechanical scattering theory.
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1.3.2 Quantum-Mechanical Treatment: The Second
Born Approximation

In the vicinity of the atomic absorption edges, the participation of free and bound
excited states in the scattering process can no longer be ignored. The first term
in the interaction Hamiltonian of Eq. (1.11) leads, in second-order perturbation
theory, to a resonance scattering contribution (in units of classical electron
scattering) equal to (Gerward et al. 1979, Blume 1994)*

1 Z S‘/’oiel 'p e-ik'r|‘//n><'//n|eo‘l’ eiko'r“//0>

m

flw) +if"(w) = ;
E,—Ey— —w—il[/2
2n

+ (Poleg-p eik'r|'//n><'//n|eo'l) eAikO.'W0>

N (1.34a)
E,—Eqy+ —w—il'/2
2n
where p is the electron momentum operator, and m is the electron mass, () the
wave function of the initial (and final) state including the photon, and e, and e,
are the polarization vectors of the incident and reflected beams, respectively. The
summation is over all unoccupied orbitals, including the free states in the
continuum. For the latter, the summation must be replaced by an integration.

The two terms in Eq. (1.34a) include processes in which the initial photon k,
has been annihilated first, and those in which the final photon k has first been
created. In the quantum-mechanical description of the first type of process, the
photon k, is absorbed and then, in a very small time interval, the photon k is
emitted through a stimulated emission process. This process and three-beam
multiple scattering are illustrated by the Feynman diagrams in Fig. 1.6.

The first term in Eq. (1.34a) represents the resonance scattering. It becomes
large when Eoon (=hw) = E, — E,. In comparison, the second term is small
and is usually neglected. The imaginary term in the denominator contains I', the
inverse lifetime (related to linewidth) of the intermediate state |, ).

For a system of independently scattering electrons, the resonance scattering
amplitude, ignoring the second term, becomes

{Yoley Z e PV, ><V¥.leo Z et PilYo>

1
S(@) +if (@) = - )

h
E,~Eq~ 2 o —il]2

(1.34b)

where the sum in the numerator is over all the electrons.
The terms in the summation for which E, — E; = hw/2r correspond to an
absorption of radiation and give rise to the imaginary part of the dispersion f".

*To be consistent with the physics literature, in this section the incident photon wave function is
defined as exp (ikq-r), rather than as exp ( —iky-r).
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FIG. 1.6 Feynman diagrams for (a) multiple scattering, and (b) resonance scattering. Source:
Feil (1975).

The separation between the real and imaginary components is achieved by use of

the expression
1

X + ie

lim (¢ — 0) = P1 — ind(x) (1.35)
x

where P indicates that the term is excluded when x = 0. The real part is then

1 <Yoley Z e Pl <y ,le, Ze'ko "pilvo>
fw)y= —— PZ ‘ N - (1.36)
E,—Ey——w
2n

where P represents the principal part of the summation in the sense that ali terms
with zero denominator are left out, while the imaginary part f” is given by

f”(w)=—~Zé(E EO'—T> l:<l//o|elze""‘ P ><Yn !eoze‘“ "pilYoy ]

(1.37)
Using
ih d
o= —— — 1.38
Px 2m dx (1.38)
for the components of the momentum operator p, and
h* d
—— — = [Hy, x] = Hyx — xH, (1.39)
4nm dx

the term defined by the numerator in Eq. (1.36) and the expression in square
brackets in Eq. (1.37) can be reduced to

2

- (B - En)e1~eo[<wo> I AR A DI ri|wo>] (1.40)

provided the operators between the vertical lines in Egs. (1.36) and (1.37) are
Hermitian (Feil 1992). The factor e, -e, is the polarization vector routinely applied
in the reduction of X-ray intensities to structure factor amplitudes.
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As is evident from Egs. (1.36) and (1.37), and from the classical treatment as
well, the effect of resonance on the intensity of X-ray scattering is pronounced
when E, = E,, that is, in the vicinity of the absorption edges. Even for data
collected at other wavelengths, it is necessary to correct the structure factors for
anomalous scattering before the electron density can be calculated by the Fourier
inversions of Eqs. (1.22) and (1.26), as further discussed in chapter 5. The
anomalous scattering factors needed for this purpose are available in the literature
(International Tables for X-ray Crystallography 1974, Kissel and Pratt 1990).

The position of the absorption edge, and its fine structure, give information
on the ionization energy of the resonating electrons, and on the nature of
spectroscopic transitions from the resonating shell to unoccupied bound states of
the scattering entity (Pickering et al. 1993, Sorensen et al. 1994). The ionization
energy [ is, in turn, related to the binding energy ¢ of the electrons and to the
electrostatic potential @ at the atomic nucleus, which is one of the physical
quantities that can be derived from the charge distribution (see chapter 8 for a
discussion of the relation between I, ¢, and ®@).

1.3.3 The Power Series Expansion of the
Scattering Operator

Scattering operators of the form exp (ik-r), as occur in Eqgs. (1.34)-(1.40), may be
developed in a power series:

exp (ik'r) =1 + ik'r — (k°r)?/2 + - -+ (1.41)

The approximation in which only the leading term in the expansion is retained is
referred to as the dipolar approximation. The dipolar approximation will be more
closely obeyed for small values of k = 2n/A, that is, for longer wavelengths and,
in particular, for visible light. The higher-order terms are also smaller when the
scattering object is compact relative to the wavelength used, that is, if either the
initial state or the final state has a compact core-type wave function.

In the dipolar approximation, the matrix elements in Eq. (1.40) become equal
to {y,le-riy, >, for a polarization direction defined by the unit vector e. The
anomalous scattering effects are then independent of the magnitude of K = k — k,,.
Factoring out the polarization effects implicit in e, * e, the angular dependence of
the scattering factor is described by the products r;r,. In other words, the scattering
amplitude is a second-order tensor property when either the ground state or the
excited stated wave function is not spherically symmetric.

Retention of additional terms of the expansion Eq. (1.41) in Eq. (1.40) gives
rise to a more complex angular dependence. Templeton has formulated the total
resonance scattering in terms of a tensor equation, which, including terms up to
fourth order, is given by (Templeton 1994)

[ +if" = eeS* + ieei(k,, — k) T + ¢epk; k, U™
+ ek ky + Ky k) V™ 4

=05, +iQy + Qg+ Qas+ - (1.42)



16 X-ray Charge Densities and Chemical Bonding

where the primed quantities refer to the scattered beam, and summation over
repeated indices is assumed. The imaginary Q,, term is a mixed dipolar-
quadrupolar term, which is absent for atoms at centrosymmetric sites. A second
fourth-rank contribution is due to the dipolar-octapolar term Q,5. Experimental
evidence for the Q,, term has been obtained from intensity measurements on
potassium chromate (Templeton and Templeton 1993). The existence of the Q,,
term was demonstrated in a study of the forbidden (111) reflection in hematite
(x-Fe,0,) (Finkelstein et al. 1992).

1.3.4 The Optical Theorem and the Relation Between
S" and f’

The scattering of the X-ray beam in the forward direction adds out-of-phase
components to the propagating beam, as the classical electron scattering has a
negative sign. This implies that the X-ray refractive index n differs from unity. The
reduction in n leads to total reflection at very small angles, which is applied in
the design of X-ray mirrors.

Since the scattering amplitude has both real and imaginary components, we

may write
n=1-6=1—-a—if (1.43)

Here, a, the real component of ¢, is related to the atomic scattering factors f by

the expression
a = (22e*2nmc?) Y. N(fi + f7) (1.44)

where the sum is over all atom types, each with number density N, and f; and f;
are expressed in units of the classical electron scattering. An equivalent formula
is obtained by substitution of A = 2n¢/w, where w is the angular frequency

a0 = (2ne*/mw?) Y. N(f; + f) (1.45)

The complex term f in Eq. (1.41) depends on f” in a manner analogous to that
expressed by Eq. (1.44):
B = (A2e*2nmc®) Y N, f{ (1.46)

Since f and f"” represent an absorption of the propagating beam, they are
related to the linear absorption coefficient u(w). This relation is called the optical

theorem
w(w) = (4ne*/mawc) Y. N, f{(w) = (22e*/mc*) Y N, f{(3) (1.47)

At energies just above an absorption edge, the contribution of the strongly
absorbing atom is dominant. The absorption of other atoms is often small and in
first approximation is independent of the energy. Expression (1.47) can be used
to obtain f"(4) for the dominantly resonating atom, over a large energy range,
from the experimental absorption curve. Substitution of the classical scattering
amplitude e?/mc?, equal t0 0.2818-107'* m, in Eq. (1.47) gives a numerical relation
between u(+) and f"(4):

u(A) = 0.5636- 10" 14AN £"(1) (1.48)
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in which g is in m ™!, 4 in m, and N, the number density, in m~2. Or, in more
common units:

p(Aem™Y) = 0.5636- 1044 AYNA ) f7(4) (1.49)
The expression for the atomic cross section g follows from ¢ = pt/N. The mass
absorption coefficient p/p of the element is given by u/p = Ac/M, where p is the

density, and A and M are Avogadro’s number and the atomic weight, respectively.
This gives, analogously to Eq. (1.49),

u(A)/p(cm? g~ 1) = 3.3940- 103 i(A) f"(1)/M (1.50)

The two anomalous components of the scattering factor, f” and [, are
interrelated through the Kramers—Kronig transforms, which have the form

2(® w
S (o) = J 5 3 f(w) dw (1.51a)
)y whg—w
or, equivalently,
2 (™ E
"(Ey) = — ——— {"(E)dE 1.51b
S '(Eo) nLES—EZf() (1.51b)

and for the inverse transformation

f"(wo) = —% ) l@-zdw (1.52)

2
0o Wy —w

Since both expressions have a singularity at o = w,, special mathematical
techniques are used for precise evaluation. A symbol P is often inserted in front
of the integral to indicate that it must be evaluated as the Cauchy principal
value, excluding the infinite contribution at wy = w. The proper mathematical
procedure to integrate across the singularity has been discussed by Hoyt et al.
(1984).

The integration in the Kramers—Kronig expression is over an infinite range.
Theoretical values of f” in regions remote from the absorption edge are therefore
required for the application of the transform. They can be calculated as described
by Cromer and Liberman (1970). The fitting of the absorption curve to the
calculated values for the dominant scatterer provides a scale for /', and eliminates
the slowly varying contributions by other atoms to Eq. (1.47) (see, e.g., Hendrick-
son et al. 1988). As a result of errors in the extrapolation procedure and the
absorption curves, an uncertainty of 0.2-0.3 electrons in the height of the whole
curve appears to be present. This should be compared with the total changes in
S/, which may have magnitudes of 6~10 electrons or larger.

A typical relation between f’ and f” near an absorption edge is illustrated
in Fig. 1.7. It shows that f has a minimum when f” has increased by about half
its total variation, that is, halfway up the slope of the edge.
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FIG. 1.7 Anomalous scattering terms f’ and f” for gadolinium near the L, edge. Source:
Giacovazzo (1992).

1.4 Neutron Scattering
1.4.1 Properties of Neutrons

The wavelength of the neutron is related to its mass m (=1.675-10"27 kg) and
velocity v by the de Broglie relation

. h
A= (1.53)
my
The velocity distribution in a neutron gas at equilibrium is subject to the laws
of the kinetic theory of gases. The neutron velocities at equilibrium obey the
Maxwell distribution

3/2
> v? exp (—imv?/kgT) (1.54)

m
S} = 4n (2nkBT

where kg is Boltzmann’s constant.
From Eq. (1.54), the rms value of the velocity of the neutrons is equal to

v= (ﬁBT)”Z (1.55)

m

which gives, for the average kinetic energy,
CEY = 12mv? = (3/2)kgT (1.56)
Substituting Eq. (1.56) into Eq. (1.53) gives, for the average neutron wavelength,
Kaverage = \/%}(BT OF  Auyerage(A) = 25.15 \/Tl—(Kw) (1.57)

As neutrons from research reactors or spallation sources are brought to an
equilibrium temperature by collisions with a moderator, the temperature T in Eq.
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(1.57) is the temperature of the moderator. Neutrons moderated at a few hundred
degrees Celsius have wavelengths comparable to interatomic distances, and can
thus be used in diffraction. The rms energy of neutrons moderated at 400 K, is,
according to Eq. (1.56), equal to 8.3-1072! J, or ~0.05 eV. This is comparable to
the spacing of the energy levels of phonons in a crystal (see chapter 2), and the
basis for phonon spectroscopy based on inelastic neutron scattering. On the other
hand, the energy of 1 A photons is higher by several orders of magnitude, as can
be easily verified from Epo00 = hc/A. A photon scattered inelastically by energy
exchange with a phonon therefore loses (or gains) an extremely small fraction of
its energy, which can only be detected with supreme energy resolution. In the case
of neutrons, the change is easily measurable by energy analysis of the diffracted
beam.

1.4.2 The Neutron Scattering Length

The principal contribution to neutron scattering is due to the interaction between
the atomic nuclei and the neutrons (Bacon 1962, Squires 1978). Since the atomic
nuclei have dimensions of 107 !3 cm (1 fermi), and nuclear forces have about this
range, the nucleus acts as a point scatterer for neutrons with 2 ~ 1 A. For practical
purposes, the neutron scattering amplitude, or scattering length b, is therefore
independent of sin 6/4, unlike the X-ray form factor. Furthermore, since the
scattering length is a property of the nucleus, it is different for different isotopes
of the same element. For some isotopes with energy-level spacings close to the
energy of thermal neutrons, scattering is a resonance phenomenon, and wavelength
dependent, in analogy to anomalous X-ray scattering. Examples are !°3Rh, 113Cd,
and '3’Gd. For most nuclei, however, the scattering length is wavelength independent.

The value of the scattering length depends also on the spin state of the
compound nucleus consisting of the neutron and the scattering nucleus. As the
neutron has a spin 1/2, every nucleus with nonzero spin has two values of the
scattering length. None of these values can be predicted by nuclear theory, so
experimentally determined values must be used. The random occurrence of
different scatterers on identical crystallographic sites is equivalent to structural
disorder, and leads to an incoherent component of the scattering. If the relative
frequency of occurrence of the isotopes in specific spin states is f;, the average
nuclear scattering length b will be given by

b=y fb (1.58)

Some values for b are listed in Table 1.1. It is the amplitude of scattering to be
used in the structure factor expression for the amplitude of the Bragg reflections.
In analogy to Eq. (1.26),

F(H) = Z b;exp (2niH 1)) (1.59)

The incoherent scattering is given by the difference between the total scattering
and the coherent scattering. For a monatomic crystal with one atom per unit cell,

Iincoherent =4n Z (BE - BZ) (1.60)
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FiIG. 1.8 Coherent neutron scattering lengths for the elements in their natural abundance,
in units of Fermi (1 fermi = 10~ '3 cm).

The spin-incoherent scattering is especially pronounced for the hydrogen
atom. Atom scattering lengths for the elements in their natural abundance are
shown in Fig. 1.8, while some coherent and incoherent scattering lengths are listed
in Table 1.1. It is of interest that the scattering lengths are of the same order
of magnitude as the scattering amplitude of the free electron, which equals
2.818-107 %3 cm, or 2.818 fermi. The incoherent scattering length is zero for
zero-spin nuclei with even numbers of protons and neutrons. As a consequence
of the large incoherent values for 'H, it is important in accurate work to substitute
deuterium for hydrogen whenever possible, in order to reduce the incoherent
background in the diffraction pattern.

The scattering lengths discussed so far refer to a fixed nucleus. If the nucleus
is free to vibrate, it will recoil under the impact of the neutron. In that case the
effective mass is that of the compound nucleus, consisting of the neutron and the
scattering nucleus. This means that the neutron mass m must be replaced by the
reduced mass of the compound nucleus u = mM /(M + m), where M is the mass
of the scattering atom. As a result, the scattering length of the free atom is related
to that of the bound atom by

bfree =ﬁb (161)
m

The difference is usually small, except for the very light elements. For 'H, for
example, the free scattering length is only half that of the bound proton.
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TABLE 1.1 Values of Coherent and Incoherent Scattering
Lengths in Fermi (1 fermi = 10™ '3 cm) for a Number of Nuclei

Abundance

Nucleus ) 1 beon binc
H 99.985 1/2 —3.74 25.22
H 0.015 t 6.67 4.03
vc 98.90 0 6.65 0
3c 1.10 1/2 6.19 0.52
39Cr 4.35 0 —4.50 0
32Cr 83.79 0 492 0
33Cr 9.50 32 —4.20 6.86
3¢Cr 2.36 0 4.55 0
3iMn 100 5/2 -373 1.79
23U 0.005 0 12.4 0
233U 0.72 772 10.5 1.3
238U 99.275 0 8.4 0

Source: International Tables for Crystallography, Vol. C (1992).

The great advantage of elastic neutron scattering over X-ray scattering is that
it gives information directly on the nuclear positions, without being influenced by
the details of the charge density distribution. The combination of the two
techniques can be used advantageously to separate the effects of thermal vibrations
from the effects of chemical bonding on the X-ray scattering, as discussed further
in chapter 5.



2

The Effect of Thermal Vibrations on
the Intensities of the Diffracted Beams

The atoms in a crystal are vibrating with amplitudes determined by the force
constants of the crystal’s normal modes. This motion can never be frozen out
because of the persistence of zero-point motion, and it has important consequences
for the scattering intensities.

Since X-ray scattering (and, to a lesser extent, neutron scattering) is a very
fast process, taking place on a time scale of 107 !® s, the photon—matter interaction
time is much shorter than the period of a lattice vibration, which is of the order
1/v, or 10713 s. Thus, the recorded X-ray scattering pattern is the sum over the
scattering of a large number of instantaneous states of the crystal. To an extremely
good approximation, the scattering averaged over the instantaneous distributions
is equivalent to the scattering of the time-averaged distribution of the scattering
matter (Stewart and Feil 1980). The structure factor expression for coherent elastic
Bragg scattering of X-rays may therefore be written in terms of {p(r)), the
thermally averaged electron density:

F(H) = f {p(r)) exp 2niH-r) dr 2.1
unit cell

The smearing of the electron density due to thermal vibrations reduces the
intensity of the diffracted beams, except in the forward |S| = 0 direction, for which
all electrons scatter in phase, independent of their distribution. The reduction of
the intensity of the Bragg peaks can be understood in terms of the diffraction
pattern of a more diffuse ¢lectron distribution being more compact, due to the
inverse relation between crystal and scattering space, discussed in chapter 1.

The reduction in intensity due to thermal motion is accompanied by an
increase in the incoherent elastic scattering, ensuring conservation of energy. In
this respect, thermal motion is much like disorder, with the Bragg intensities

22
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representing the average distribution, and the deviations from the average
appearing as a continuous, though not uniform, background, generally referred
to as thermal diffuse scattering or TDS,

2.1 The Normal Modes of a Crystal
2.1.1 Phonons, Internal and External modes

A crystal with n atoms per unit cell has 3nN degrees of freedom, N being the
number of unit cells in the crystal. Thus, subtracting the translations and rotations
of the crystal as a whole, there are 3nN — 6 (=3nN) normal modes. Since the
displacements of atoms in different cells are correlated, the normal modes are
waves, or phonons, extending over the crystal, with force constants @, obtained
from a sum over the interactions between atoms in all unit cells, and wavevector q.

For a small change in magnitude of q, the change in frequency w is small, and
w is a continuous function of |g| (=2n/4). The dependence of w on |q| is referred
to as the dispersion relation. The number of phonon branches with continuously
varying w equals 3n, but some of these may be degenerate due to the symmetry
of the crystal.

For a molecular crystal, the description can be simplified considerably by
differentiating between internal and external modes. If there are M molecules in
the cell, each with n,, atoms, the number of external translational phonon branches
will be 3M, as wili the number of external rotational branches. When the molecules
are linear, only 2M external rotational modes exist. For each molecule, there
are 3ny — 6 (3ny, — 5 for a linear molecule) internal modes, the wavelength
of which is independent of q. Summing all modes gives a total number of
N{M(3n, — 6) + 6M} = 3nN, as required, because each of the modes that have
been constructed is a combination of the displacements of the individual atoms.

In the harmonic approximation, a mode is described by a single force constant
k,, equal to the ratio between the magnitudes of the displacement and the restoring
force (Hooke’s law). For molecular crystals, the force constants of the internal
modes are usually much larger than those of the external modes. Frequencies of
the former are typically in the 500-3000 cm ™! range, similar in value to those of
the isolated gas-phase molecule. Phonon frequencies tend to be very much lower,
in the 20-200cm ™! range. The variation of the phonon frequency with the
wavelength of the phonon is pronounced for acoustical modes, for which all
particles (molecules for a molecular crystal, and atoms otherwise) in the unit cell
move in phase. If the unit cell contains more than one particle, optical modes exist,
for which two particles in the same unit cell have opposite phase. The dispersion
curves for the rock-salt structure are illustrated in Fig. 2.1, and for the rigid body
vibrational modes of the molecular crystals anthracene and naphthalene in Fig. 2.2.

2.1.2 The Frequency of the Normal Modes

The theory of lattice vibrations was developed by Born and von Karman (1912,
1913), and is described in detail in a monograph by Born and Huang (1954). The
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equations of motion of a vibrating assembly of atoms j, each of mass m(j), are
given by

m(])u(.]’ l) = _z (Daa'(j’ j’)u(j/’ t) (223)

in which ii is the vector of the second time-derivatives of the displacements u and
@ is a 3 x 3 force constant matrix, with elements

(i)
Ou, U, /g

where V is the potential giving rise to the forces. Thus, —®,,.(j, j') is the force
exerted in the o direction on atom j when atom j is given a small unit
displacement in the o' direction. The summation in Eq. (2.2a) is over all atoms in
the crystal, but, in general, the largest contributions originate from nearest-
neighbor interactions.

The number of independent elements of ® may be restricted by symmetry. In
the face-centered cubic structure, for example, the force constant matrix for two
atoms 1/2 1/2 0 apart is given by (Willis and Pryor 1975)

« y 0
O=|y a O (2.3)
0 0 8

in which the zero elements correspond to cases in which one of the two directions
a and ¢« is perpendicular to the internuclear vector, and the second has a
component along this vector.

For harmonic oscillations the time-dependent displacements u of atom j are
related to the amplitudes of vibration U(j) by

u(j, 1) = U(j)e ™ 24

in which w is the angular frequency, equal to 2mv.
The amplitude U(j) is complex when the phase at t = 0 is taken into account,
that is,

U(j) = [U(j)le (2.5)
Substituion of Eq. (2.4) into Eq. (2.2a) gives
m(j)w*U(j) = Z O(jjHUG) (2.6)
g

The phonons are not stationary modes, but traveling waves extending through
the whole crystal. The momentum of a phonon can be assigned as equal to 4gq, in
analogy with the momentum of a photon, though it is not strictly defined, as the
phonon can be described equivalently in an extended Brillouin zone (see Fig. 2.1),
corresponding to a different value of the wavevector q.

The displacements of a particle j at r in unit cell /, subject to a phonon wave
with wave vector q, obey the equation

u(jl, 0y = |U(jlq) exp [iq-r(j)) — w(@)t + ¢(j, 9] (2.7a)
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FIG. 2.1 Dispersion curves for the rock-salt structure. The terms m, and m, are the masses
of the two ions in the rock-salt structure. The relative directions of displacement of the two
types of atoms at a number of points along the branches are indicated. Source: Willis and
Pryor (1975). Reprinted with the permission of Cambridge University Press.

Using Eq. (2.5), this becomes
u(jl, 1) = U(jlq) exp Li(q-r(jl) — w(q)1)] (2.7b)

Note that atoms in different unit cells have the same amplitude of vibration
for a particular phonon,; they differ in the phase of the traveling wave because of
the q-r(jl) term.

The equation of motion (2.2a) can now be rewritten as the sum over the atoms
in a unit cell and the sum over all unit cells:

m(j)i(jl, 1) = —ZZCD<}I {,)u(j’l’,t) (2.2b)
g

As before, the element —d)aa,(; /

’

) is the force in the « direction exerted on

atom (jl) when atom (j'l') is given a small unit displacement in the « direction;
the index j runs from ! to n, the number of atoms in the unit cell, and ! runs over
all unit cells.

It is clear from Eq. (2.2b) that the frequency w in Eq. (2.7) is a function of g,
because q governs the relative displacement of two interacting atoms. The w(q)
dependence on q (the dispersion relationships) is illustrated in Fig. 2.1 for the
rock-salt structure. It can be shown that all normal modes can be represented in
the first Brillouin zone, which extends from 0 to n/a in the a direction of the
rock-salt structure, or, more generally, is bounded by faces located halfway
between the reciprocal lattice points in the space defined by' a;-a; = 2nd,;. The

! Note that compared with Eq. (1.21) a factor 2r occurs on the right-hand side of this equation.
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number of normal modes within the first Brillouin zone along each of the branches
in Fig. 2.1 is equal to the number of unit cells in the crystal along the a direction.
Substitution of Eq. (2.7b) into Eq. (2.2b) leads to the matrix equation

w?U,, = DU, (2.8)
where U, is a column matrix of the mass-adjusted displacement coordinates
U,, = m'?U (2.9)

in which m is a 3n x 3n diagonal matrix obtained by repeating the masses three
times along the diagonal (for the three displacements of each atom). Term D is
the mass-adjusted dynamical matrix of the crystal, an element of which is given by

s/

é ~;,)exr)[iq'{r(j’l’)—r(jO)}] (2.10)

D (i' 1 @) = m(j) " Pm(j)" V2 Y ‘D<
g

The elements of D represent the sum over all unit cells of the interaction
between a pair of atoms. D has 3n x 3n elements for a specific ¢ and j, though
the numerical value of the elements will rapidly decrease as pairs of atoms at
greater distances are considered. Its eigenvectors, labeled e,(j | kq), where k is the
branch index, represent the directions and relative size of the displacements of the
atoms for each of the normal modes of the crystal. Eigenvector e,(j| kq) is a column
matrix with three rows for each of the n atoms in the unit cell. Because
the dynamical matrix is Hermitian, the eigenvectors obey the orthonormality
condition

Y ex(jlk@)e(jlk'q) = oy 211

af

that is, when summed over all three directions « and all atoms, the product is
equal to 1 if k = k', and zero otherwise. The eigenvectors are, in general, complex,
as a phase vector is included, except for an atom or molecule located on a center
of symmetry, for which the phase is symmetry restricted to be zero or m.

The mean-square displacements of each of the atoms in the crystal, which
affect the the X-ray scattering amplitudes, are obtained by summation over the
displacements due to all normal modes, each of which is a function of e,(j | kq), as
further discussed in section 2.3. The eigenvalues of D are the frequencies of the
normal modes.

For a molecular crystal, the internal modes tend to be q independent and thus
appear as horizontal lines in Fig. 2.1; n is then equal to the number of molecules
M in the cell, leading to a considerable simplification. The resulting dynamical
matrix has 6M x 6 M elements, considering both translational and rotational
motions, and atom-atom potential functions may be used for its evaluation.
Dispersion curves obtained in this manner for anthracene and naphthalene, are
illustrated in Fig. 2.2.

The relation between the crystallographic temperature factors and the eigen-
vectors e of D is discussed in section 2.3.
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traveling in the b direction. In each crystal there are two molecules in the unit cell, leading
to 12 external phonon branches. The librational modes are labeled R. Source: Pawley (1967).

2.2 The Effect of Thermal Vibrations on the Bragg Intensities

2.2.1 The Born—-Oppenheimer Approximation

Since electrons are much lighter than nuclei, they move much faster, and may be
assumed to adjust instantaneously to a change in nuclear configuration. This is
the background for the Born—-Oppenheimer approximation, which allows separation
of the nuclear and electronic energies. In the Born—Oppenheimer approximation,
the electronic energy and the electron distribution are functions of the instanta-
neous nuclear coordinates, the dependence on the nuclear coordinates resulting
from the electrostatic attractions between the electrons and the nuclei. The
time-averaged electron density {p(r)) is then the weighted average of the electron
density for each of the nuclear configurations which occur along the nuclear
vibration path, the weights being determined by the nuclear probability distribu-

tion P(u,,...,uy), where uy, ..., uy are the displacement coordinates.
Thus, if p(r, uy, ..., uy) is the electron density at r corresponding to the nuclear
geometry u,, ..., uy, the time-averaged electron density is

{p(r)) = Jp(r, Uy,...,uy)P(r,u,, ..., uy)du, ... duy (2.12)
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When the electrons can be assigned to specific nuclei, and follow these nuclei
perfectly, the density for such a rigid group can be written as

<prigid group(r)> = jps(atic(r - U)P(ll) du = ps!alic(r - u)*P(u) (213)

The label of rigid group as used here may apply to atoms or rigidly connected
groups of atoms. In the former case, we obtain

<patom(r)> = palom. static(r)*P(u) (2]4)

Expression (2.14), referred to as the convolution approximation, is widely applied
in crystallographic work.

2.2.2 The Harmonic Temperature Factor

According to the Fourier convolution theorem, further discussed in section 5.1.3,
the Fourier transform of the convolution in expression (2.14) is the product of the
Fourier transforms of the individual functions, or

(SO = Flpuoml®)) = f(S)T(S) (2.15)

Thus, the temperature factor T(S) is the Fourier transform of the probability
distribution P(u): 7(S) = F{P(u)}. In the common case that the rigidly vibrating
groups are considered to be the individual atoms, 7(S) is the Fourier transform
of the atomic probability distribution.

For a harmonic oscillator, the probability distribution averaged over all
populated energy levels is a Gaussian function, centered at the equilibrium
position. For the classical harmonic oscillator, this follows directly from the
expression of a Boltzmann distribution in a quadratic potential. The result for the
quantum-mechanical harmonic oscillator, referred to as Bloch’s theorem, is less
obvious, as a population-weighted average over all discrete levels must be
evaluated (see, e.g., Prince 1982).

For an isotropic potential, the three-dimensional probability distribution is
given by?

P(u) = 2ndu®)) ™% exp { —u?/2{u*>} (2.16)

where (u?) is the (isotropic) mean-square displacement. The corresponding
temperature factor follows from

T(S) = F{Pu)} = 2ndu?))~%? Je'"2’2<“z> e2™iST gr (2.17)

The integral in Eq. (2.17) is the product of the integrals over each of the Cartesian

2 In practice, the probability distribution often includes static disorders in the crystal. The temperature
parameter B in such cases is more properly described as a mean-square displacement parameter.
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coordinates, I = I, 1 I.. For the integration over the x coordinate,

1N g

I = J‘ e~x2/2<u2> 27iSxx 1y J o~ X2+ 2niSux gy
x

— — 20

— (27I<u2>)1/2 e-lnSi(tﬂ) (2‘8)

as can be verified by completing the square in the exponent of the second integral
by multiplication with the x-independent term e>™5~<“*>_ Substitution into Eq.
(2.17) gives, for the isotropic harmonic temperature factor,

7(S) = exp (—2n282<u2>) (2.19)
or, equivalently,
T(S) = exp (— B sin?0/1%) with B = 872{u?) (2.20)

It is noted that both the probability distribution of Eq. (2.16) and the
temperature factor of Eq. (2.19) are Gaussian functions, but with inversely related
mean-square deviations. Analogous to the relation between direct and reciprocal
space, the Fourier transform of a diffuse atom is a compact function in scattering
space, and vice versa.

A trivariate normal distribution describes the probability distribution for
anisotropic harmonic motion in three-dimensional space. In tensor notation (see
appendix A for the notation, and appendix B for the treatment of symmetry and
symmetry restrictions of tensor elements), with j and k (=1, 3) indicating the axial
directions,

|o.-1l1/2

O any

exp { —30; (wu*)} (2.21a)
where u’ are the contravariant displacement coordinates with respect to the
covariant axes x;, o is the matrix with elements {u’ u*>, and |6 Y| is the determinant
of the inverse of ¢. As is common in tensor notation, summation over repeated
indices has been assumed. The corresponding equation in matrix notation is

|o.—lll/2

P(ll) = (27.[)3/2

exp { —3(u) 7o~ '(u)} (2.21b)
where the superscript T indicates the transpose.

The anisotropic temperature factor will be the Fourier transform of P(u),
given by

T(S) = exp { —2n%c*h;h, } (2.22a)

or, in matrix notation,
T(S) = exp { —2n*S" ¢S} (2.22b)
With the change of variable §* = 2n2¢7%, Eq. (2.22) is, for a reflection 4t S = H,
T(H) = exp { — p*h;h,} (2.23)

In the atomic model, the tensor B’ describes the anisotropic motion of an
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FIG. 2.3 Equal probability ellipsoids for §-(BEDT-TTF)PF, [BEDT-TTF = bis(ethylene-
dithiotetrathiofulvalene)] Source: Bu et al. (1992).

atom, Since p* = 2n2¢’* = 2n2{uu*>, then
B = 2r%uiut) (2.24)

It is clear from Eq. (2.24) that B is a symmetric tensor, which must have positive
principal components in order to be physically meaningful.

We are often interested in the rms thermal displacements in A. They
correspond to the contravariant components U/ along covariant axes of unit
length, rather than along the non-unit length a, b, ¢ axes. The rms displacements
are obtained from

B* = 2n2 U al||a*| (2.25a)
or
. B
U* = _ 2.25b
2n3|ad|la¥| ( )

The tensor U* may be represented by its equal probability surface, which,
according to Eq. (2.21) is given by

woptut = c? (2.26)

where, as in Eq. (2.21), o' is the inverse of ¢7*, and ¢ is a constant. For ¢ = 1.5382,
the volume of the ellipsoid is equal to one half, that is, the probability that the
atom is inside the ellipsoid is 509 (appendix C). This ellipsoid is referred to as
the 50% probability ellipsoid. An example is given in Fig. 2.3.
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The mean-square displacement of an atom in a direction defined by the unit
vector ¥ is given by

(uy = 65,6, (2.27)

The surface defined by ¢” is not an ellipsoid, but is, in general, peanut shaped
(Hummel et al. 1990).

2.2.3 Beyond the Harmonic Approximation

The probability distribution of Eq. (2.21) was derived assuming rectilinear motion
in a harmonic potential. The true potential in a crystal is often more complex,
especially in the upper parts of the potential surface, which are of importance at
higher temperatures.

Three more general distributions and the corresponding temperature factors
are discussed in the following.

2.2.3.1 The Gram—Charlier Expansion

The three-dimensional Gram—Charlier expansion, first applied to thermal motion
analysis by Johnson and Levy (1974), is a statistical expansion in terms of the
zero and higher derivatives of a normal distribution (Kendal and Stuart 1958). If
D; is the operator d/du’, the expansion is defined by

; | | B
P(u) = [1 - CJDJ + 5 CJkDJ-Dk - 3"‘ CjlejDle +

3] c*

+(—1y< D, ... D,rJPo(u) (2.28)

r!

The leading term Py(u) is the harmonic probability distribution, «; = 1, 2, or
3, and D,,...D, is the rth partial derivative operator ¢"/(du**...du™). The
Einstein convention of summation over repeated indices is implied.

For a distribution expanded around the equilibrium position, the first
derivative is zero, and may be omitted, while the second derivatives are redundant
as they merely modify the harmonic distribution. Since P,(u) is a Gaussian
distribution, Eq. (2.28) can be simplified by use of the Tchebycheff~-Hermite
polynomials, often referred to simply as Hermite polynomials,® H,, ,,, related to
the derivatives of the three-dimensional Gaussian probability distribution by

H,, . wexp(=3pux/x*)=(=1)D,, ... D, exp (—3ppx/x*) (229)

The result is

1 . 1 .
P(u) = ’:1 + 3 ™M H(w) + a I H (1)

o, 1.
+ § Cjklmnij,m,,(u) + a cjklmnPijlmnp(u) + .- .:|p0(u) (2.30a)

* The polynomials defined here are different from the Hermite polynomials which occur in the solutions
of the Schrédinger equation for the harmonic oscillator.
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TABLE 2.1 Low-Order Hermite Polynomials

H(u) =}
Hiu) = w j
Hy(u) = R
Hjy(u) = Wiy = WP+ Wi p + WleA) = Wiwew, — 3wl jpy)
Hgu) = wiwowpw,, — ow( jwipp,) + 3pj(kp,",)
Hijppn(0) = wiwonpv, vy, = lOw(,\\',,,w,,pj,() + 15W(, Py Pim)
Hig (W) = wiwgiww, i w, + ASW( Wy Prw Pup) — 15W( W wyw,p i) — 15p i DimPay)

Note:w; = p, x*, where the Gaussian function is defined as exp (—3p, x’/x*). Brackets indicate averaging of the term
over all permutations of the bracketed indices which produce distinct terms, noting that p;, = p,; and wjiv, = ww;.
Source: Johnson (1969), Johnson and Levy (1974), Zucker and Schulz (1982).

Here, the permutations of j, &, I, . . . include all combinations which produce
different terms. The multivariate Hermite polynomials are listed in Table 2.1 for
orders < 6. Like the spherical harmonics, the Hermite polynomials form an
orthogonal set of functions (Kendal and Stuart 1958, p. 156).

The coeflicients ¢ in this probability distribution are referred to as the
quasimoments of the distribution. Because of the orthogonality of Hermite
polynomials, the quasimoments of a function are obtained by integration of the
product of the function and the related Hermite polynomial over all space. For
the one-dimensional case,

o= ;1~’ Jf(x)Hj(x) dx (2.30b)
j!

Thus, the quasimoments are directly related to the moments y of a distribution
defined by p* =% f(x)x'x/x*...dx. The relations between the two sets
follow by substituting the expressions for the Hermite polynomials into Eq. (2.30b).
They can also be derived by writing f(x) as an expansion, both in terms of its
moments [see Eq. (2.33)], and in terms of the quasimoments [as in Eq. (2.30a)],
and equating equivalent terms.

The Gram-Charlier temperature factor is the Fourier transform of Eq. (2.30),
which is given by

T(H) = [1 — $n3ic™n;h hy + 30 hyhy by, + Fsnic ™ bbby by,
- zi%nbcjklm"phjhkhlhmhnhp + v ]To(H), (231)

where Ty(H) is the harmonic temperature factor.

As Eq. (2.31) shows, the Gram--Charlier temperature factor is a power-series
expansion about the harmonic temperature factor, with real even terms, and
imaginary odd terms. This is an expected result, as the even-order Hermite
polynomials in the probability distribution of Eq. (2.30) are symmetric, and the
odd-order polynomials are antisymmetric with respect to the center of the
distribution.
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2.2.3.2 The Cumulant Expansion

A second statistical expansion that may be used to describe the atomic probability
distribution is due to Edgeworth (Kendal and Stuart 1958, Johnson 1969). It
expresses a distribution in terms of its cumulants x. If D is the differential operator,
P(u) is described as

1 1 1
P(u) = I:exp (h’D + — 5 x*D,D, — 3 kM D.D,D + a — k™mD.D, DD, . -)]Po(u)
(2.32)

where Py(u) is the harmonic probability distribution. Though the differential
operator in Eq. (2.32) occurs in the exponent, use of a Taylor expansion leads to
an expression of a more common form.

A cumulant of rank s is a symmetric tensor with (s* + 3s + 2)/2 unique
elements for a three-dimensional distribution. Like the moments y and the
quasimoments ¢, the cumulants are descriptors of the distribution. For a one-
dimensional distribution, the relations between the cumulants and the moments
are defined by equating the two expansions:

r

! r! 2! (233)

2 r 2
exp frx + S o
r!
As is evident from Eq. (2.18), the Fourier transform of an exponential is an
exponential. Fourier transform of Eq. (2.32), omitting, as in Eq. (2.30), the first- and
second-order terms, gives (Kendal and Stuart 1958)

a4
T(H) = exp [( il e b by + (ZZ") K™ b by, -]To(H)

= exp [—3miKhhhy + Snt kg by, + - 1 T(H) (2.34)

Compared with the Gram—Charlier temperature factor of Eq. (2.31), the entire
series now occurs in the exponent, so, in the cumulant formalism, terms are added
to the exponent of the harmonic temperature factor To(H) = exp {— f*h;h, }.

Application of the Taylor expansion exp(iH) =Y (iH)"/N! to Eq. (2.34)
shows that the two expressions are identical if all terms up to infinity are included.
The Taylor expansion of Eq. (2.34) is
(2ni)*

!

3
TH) = [1 + Qg:l k™ hhhy + KM R By by, -

(2mi)° klmnp
e L

jkl, . .mn
G K g "}hjhkh,hmh,,h,,

+ higher-order terms} T,(H) (2.35)

This formulation, referred to as the Edgeworth approximation (Zucker and
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Schulz 1982), corresponds to a probability distribution which is the Taylor
expansion of Eq. (2.32), and similar to the Gram—Charlier distribution of Eq.
(2.30):

1 . 1 .
P(u) = Po(u)[l + 3 K Hyp(u) + a K H () + - -

| B ;
+ & {2+ 10K K™} H iy jnp + higher-order terms] (2.36)

Relations between the cumulants k™ and the quasimoments ¢/ follow from
comparison of Eqs. (2.36) and (2.30):

ol — ikt

Cjklm — Kjklm

2.37)

cjklmn — Kjklmn
cjklmnp — Kjklmnp + IOKjlemnp

The result shows that the sixth- and higher-order cumulants and quasi-
moments differ. The third-order cumulant x* contributes not only to the
coefficient of H*, but also to higher-order terms of the probability distribution
function. The situation is analogous for cumulants of higher orders. It follows that
for a finite truncation of the temperature factor defined by Eq. (2.34), the
probability distribution cannot be represented by a finite number of quasi-
moments. This is a serious difficulty when a probability distribution is to be derived
from an experimental temperature factor of the cumulant type. A second complica-
tion in the use of the cumulant expansion, pointed out by Scheringer (1985), is
that the probability function always has some physically unrealistic negative
regions. In certain cases of large anharmonicity, the Fourier transform of Eq. (2.34)
may, in fact, not exist at all. As a result of such considerations, the Gram-Charlier
expression is generally preferred over the cumulant expansion, because its
truncation is equivalent in real and reciprocal space, and it does not lead to
negative regions in the probability distribution (Kuhs 1983, 1992; Scheringer 1985).

2.2.3.3 The One-Particle Potential (OPP)
Model

Unlike the Gram—Charlier and cumulant formalisms, the OPP model has a
physical rather than a statistical basis. It assumes that each atom vibrates in a
potential well V(u), determined by the interaction with the other atoms in the
crystal, without any correlation between vibrations of adjacent atoms.

In the classical high-temperature limit, kg7 >» hv, where kj is the Boltzmann
constant, and hv is the spacing of the quantum-mechanical harmonic oscillator
energy levels. If this condition is fulfilled, the energy levels may be considered as
continuous, and Boltzmann statistics apply. The corresponding distribution is

P(u) = N exp { — V(u)/kyT} (2.38)

with N, the normalization constant, defined by | P(u) du = 1.
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The potential function may be expanded in terms of increasing order of
products of the contravariant displacement coordinates (Dawson 1967, Willis
1969)

V="V, +aqu + Bpwu* + ydutu' + 84w uu'um + - (2.39)

As in the probability distributions of Eqgs. (2.30) and (2.32), the first derivatives
vanish at the equilibrium position, so a; = 0. The constant }; term does not affect
the probability distribution, and may also be omitted. Substitution of Eq. (2.39)
in Eq. (2.38), and use of the approximation exp (— A) = 1 — A for the higher-order
terms, leads to

P(u) = N exp {—Bjpwu* }{1 — yjwutu' — & wutu'um — -} (2.40)

in which 8’ = B/(kgT), etc. In the description, the higher-order terms appear as
corrections to the harmonic temperature factor. We note that the normalization
factor N depends on the level of truncation of the series.

The Fourier transform of the OPP distribution, in a general coordinate system,
is (Johnson 1970, Scheringer 1985)

T(H) = To(M[1 - $7°iy, G™M(H) + $n°85, G*"(H)
+ 157 i€jumn G™™(H) ~ 357 @i, G P(H) . . ] (241)

where T, is the harmonic temperature factor, and G represents the Hermite
polynomials in reciprocal space.
The harmonic term Ty(H) of Eq. (2.41) is equal to

To(H) = exp — {n?kgT(B~*)"h;h;} (2.42)

Comparison with Eq. (2.23) shows that the classical OPP model predicts the
elements of the anisotropic harmonic temperature parameter to be proportional
to the absolute temperature.

Expressions simpler than Eq. (2.41) are obtained if the OPP temperature
factor is expanded in the coordinate system which diagonalizes ;. In that case,
the Hermite polynomials become products of the displacement coordinates u/
(Coppens 1980, Tanaka and Marumo 1983). The first terms in the expansion are
given by

T(H) = eXp(—nhkaT/ﬂjj){ [ ,-yjﬁ[kd%) " mz(;h) ]
Ji jj

3h2h,
+ iyl kgT — 27 ]
y[ ot 2ﬂ,,ﬂkk “el) gz
3
— iyl Ty? P }+ - 2.43)
yﬂd ? ﬁuﬁkkﬁll (

This result indicates that, according to the OPP model, the higher-order
anharmonic terms have a stronger temperature dependence than the leading
harmonic terms. The quartic terms, not specifically included in Eq. (2.43), have
an even larger temperature dependence proportional to 7°. Thus, the effect of
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anharmonicity may be effectively reduced by cooling when the harmonic tempera-
ture factor is the leading term in the expansion. This is an important result for
charge density analysis, especially for heavier atoms, for which anharmonicity
affecting all electron shells may mask the bonding effects of the valence-electron
distribution.

2.2.3.4 Application to Diamond-Type Structures

Dawson and coworkers pioneered the application of the OPP model to diamond-
type structures (Dawson 1967, Dawson et al. 1967). In the diamond-type structure,
common to diamond, silicon, and germanium, the atoms are located at 1/8, 1/8,
1/8, at the center-of-symmetry related position at —1/8, —1/8, —1/8, and repeated
in a face-centered arrangement. The tetrahedral symmetry of the atomic sites
greatly limits the allowed coefficients in the expansion of Eq. (2.39). With x, y, z
expressed relative to the nuclear position, the potential is given by

V="Vy+Bx*+y +z2) +yxyz +- -+ (2.44)

with a corresponding OPP temperature factor, obtained by omitting the symmetry-
forbidden terms from Eq. (2.43),

3
T(H) = exp { —n(h* + k* + lz)kBT/ﬁ}{l — iy(kgT)? nﬂhakl} (2.45)

When the atomic scattering factor is real (as it is when bonding effects on the
charge density are neglected), and resonance scattering has been corrected for, the
harmonic structure factor expression is equal to

F(H) = 8f cos {2n(h + k + 1)/8} T, (2.46)

where T, represents the harmonic temperature factor, defined by the exponential
factor in Eq. (2.45). Thus, in this approximation, F(H) equals zero for reflections
with h + k + ! = 4n + 2, such as (222), (442), and (662). However, the atoms
vibrate more strongly into the void opposite the tetrahedrally arranged bonds,
while the displacement in opposite directions into the bonds is more constrained.
As a result, y in Eqs. (2.44) and (2.45) has a significant negative value, leading to
nonzero intensity due to anharmonicity for reflections with h +k +1=4n+2
and large values of the product hkl. The corresponding intensity increases with
temperature, because the anharmonic term is proportional to T2. This effect, and
its relation to the scattering of the covalent bonding density, is further discussed
in chapter 11.

2.2.4 Comparison of the Anharmonic Formalisms

The OPP formalism, though based on the assumption of independent motion, has
the advantage of assigning a physical meaning to the terms in the expansion. By
equating the OPP terms to the corresponding ones in the statistical expansions,
the quasimoments and cumulants can be related to the parameters of the potential
model, and their temperature dependence can be predicted.
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(a)

FIG. 2.4(a) The coordination of Al(4) in VAl,, ,,. Thermal ellipsoids (100 K) are at the
50%, probability level. Four nearest-neighbor Al(3) atoms are located 3.1330 (4) A from
Al(4) in the [111] directions, while 12 Al(1) atoms are at 3.1484 (5) A, arranged in groups
of three, capping each face of the tetrahedron formed by the Al(3) atoms. Source: Kontio
and Stevens (1982).

For a cubic site, relations between the cumulants and the coefficients of the
OPP model have been derived by Kontio and Stevens (1982), and applied to the
Al(4) atom in the alloy VAl 4,. The coordination of Al(4) is illustrated in Fig.
2.4(a), while the potential along [111], derived from the thermal parameter
refinement, is shown in Fig. 2.4(b). It is clear from these figures that higher than
third-order terms contribute to the potential, because the deviation from the
harmonic curve is not exactly antisymmetric with respect to the equilibrium
configuration. The potential appears steeper at the higher temperature, which is
opposite to what is expected on the basis of the thermal expansion of the solid.

2.2.5 Quantum-Statistical Treatments

The classical model predicts thermal motion to vanish at very low temperatures,
in contradiction to the zero-point vibrations which follow from the quantum-
mechanical treatment of oscillators. For temperatures at which hv ~ k7, the
spacing of the discrete energy levels cannot be neglected, so the classical model is
no longer valid.

For a harmonic oscillator with frequency v, the potential energy equals
1/2k [Cu*», where k, is the force constant. Using the virial theorem, which states
that Ekin = Epol = Etot/z’

E o = k<u?y (247)
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(b)

FiG. 2.4(b) The experimental potential along the [111] direction for the Al(4) atom in the
alloy VAl ,,, obtained with the one-particle potential temperature factor. Left: 100 K;
right: room temperature. The broken lines represent the harmonic components. Differences
between the classical and quantum-statistical results at both temperatures were found to
be extremely small. Source: Kontio and Stevens (1982).

According to statistical mechanical theory, the total energy of the oscillator
is a function of the partition function z, through the relation

dlnz
oT

E, = kgT? (2.48)
where T is the absolute temperature. The partition function z for the harmonic
oscillator is obtained by the summation over all levels E = vhv, where v is the
vibrational quantum number, and E is counted from the lowest (v = 0) level, at
hv/2. The well-known result is

o b (2.49)

1 _ e*hv/kgT

Substitution into Eq. (2.48), and adding the zero-point energy hv/2, gives

Eg = hv[£ + —1-] (2.50)

2 ehv/kgT _ 1
Combining this result with Eq. (2.47), and substitution of k = 4n’mv, where
m is the reduced mass of the harmonic oscillator, gives the quantum-statistical
temperature dependence of (u?> as

h 1 1
CF N S 2.51a
< 47%my I:Z ehvikeT _ 1] ( )
or, equivalently,
h hy
2=_._—coth - 2.51b
< 8n’mv © (2kBT) ( )
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FiG. 2.5. Temperature dependence of the mean-square (ms) displacement of a quantum-

mechanical harmonic oscillator with a mass of 200 daltons for a number of frequencies.
The linearity of the ms displacement in the high-temperature region is evident.

This expression is illustrated in Fig. 2.5 for a number of frequencies. For large T,
with e* ~ 1 + A, this reduces to
u?y = ksT (2.52)
hy

Thus, in the high-temperature limit, the mean-square displacement of the
harmonic oscillator, and therefore the temperature factor B, is proportional to the
temperature, and inversely proportional to the frequency of the oscillator, in
agreement with Eq. (2.43). At very low temperatures, the second term in Eq. (2.51a)
becomes negligible. The mean-square amplitude of vibrations is then a constant,
as required by quantum-mechanical theory, and evident in Fig. 2.5.

Quantum-statistical expressions such as Eq. (2.51) can be generalized for
anharmonic motion, as shown by Mair (1980).

2.2.5.1 Numerical Application of Expression
(2.51)

Substitution of values for the physical constants yields the numerical expression

33.69 1 |
2(A%) = ~+ 2.51
wHAD m(dalton)v(cm“)I:Z gvtem” N0.695T _ 1] (231¢)
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The temperature dependence according to this expression is illustrated in Fig.
2.5 for a number of frequencies, and a mass of 200 daltons. As the mean-square
displacement scales with the inverse mass of the oscillator, the onset of the linear
region is independent of mass for a given frequency.

As at very low temperatures, for very high frequencies the thermal motion
becomes temperature independent. For example, for the C—H stretching mode,
with frequency in the 2700-3300 cm ~! range, the exponential in the denominator
of Eq. (2.51) is very large for common temperatures and the second term in the
square brackets is negligible. Using for m the reduced mass of the oscillator (0.9231
dalton for diatomic C—H) gives, with v =3000cm !, a constant mean-square
vibrational amplitude of 0.006 A2,

Vibrations in a real crystal are described by the lattice dynamical theory,
discussed in section 2.1, rather than by the atomic oscillator model. Each harmonic
phonon mode with branch index k and wavevector q then has, analogous to Eq.
(2.50), an energy given by

1 !
Eo(kq) = hv(kq)[2 + WW‘_T“-TJ (2.53)

2.3 The Relation between the Atomic Temperature Factors and
Lattice Dynamics

2.3.1 General Expression

As the oscillators of the OPP model vibrate independently of each other, the
frequencies are dispersionless, that is, independent of a wavevector q. For the
internal modes of a molecular crystal, this tends to be a very good approximation.
For the external modes, the dispersion can be pronounced, as shown in Figs. 2.1
and 2.2. In order to obtain the mean-square vibrational amplitudes for the latter,
a summation over all phonon branches in the Brillouin zone must be performed.

The atomic displacements for the mode (kq) are described by the 3n column
matrix U, which we used in Eq. (2.9). Matrix U is a function of the eigenvectors
e(kq) of the mode, and its amplitude A(kq):

Ukq) = m~'2U,(kq) = m™'*| A(kq)|e(kq) (2.54)
The displacements are related to the energy of a mode by the expression
E(kq) = No?(kq)lA(kq)|® (2.55)

where N is the number of unit cells. This expression is analogous to Eq. (2.47),
E; = kf<uz>, for the single harmonic oscillator, as can be verified by the
substitution of k, = me? in the latter expression.

The displacement of an atom j, in unit cell /, at time ¢, is obtained by the
summation over all 31N normal modes, combined into 3n phonon branches,

u(jl, 1) = m(j)~ "2y JAkq)le(jlkq) exp [i(q-r(jl) — w(kq)] (2.56)
kq
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or, using Eq. (2.55),

1/2
u(j,1) = Nm(j)" 2 Y (E—;(ﬂ) e(j 1 ka) exp [itg-1(jD) — wika)]  (2.57)
ka \w*(kq)

The tensor (U}, describing the mean-square displacements of atom j, is the
time average <u(j)u(j)T >, where uis the 3 x 1 column matrix of the displacements
of atom j along the Cartesian axes, and T indicates the transpose. Since the normal
modes are independent of each other, cross terms between modes disappear in the
averaging. The result is

1 E
(U= —— Z W(q)

] *(jlkq)T 2.58
N i U K€U k) (2.58)

Application of Eq. (2.58) to calculate the temperature factors requires
knowledge of the full frequency spectrum of the crystal throughout the Brillouin
zone. Such information is only available for relatively simple crystal structures
such as Al, Ni, KCl, and NaCl (Willis and Pryor 1975, p. 13f1.). Agreement between
theory and experiment for such solids is often quite reasonable.

A considerable simplification is achieved when molecules can be treated as
rigid bodies, as was done for naphthalene and anthracene (Fig. 2.2), the frequency
spectra of which were derived using atom—-atom potential functions. The mean-
square displacements due to the internal modes can be calculated from the
experimental infrared and Raman force constants, and added to the values
obtained with Eq. (2.58). The rigid-body model for thermal vibrations is further
discussed in section 2.3.3.

A very much simplified lattice-dynamical model is that of Debye. In the Debye
approximation, discussed in the following section, a single phonon branch is
assumed, with frequencies proportional to the magnitude of the wavevector q.

2.3.2 The Debye Approximation

The Debye model assumes that there is a single acoustic branch, the frequency of
which increases with constant slope (proportional to the average velocity of sound
in the crystal) as g increases, up to the boundary of the Brillouin zone. The
boundary is assumed to be of spherical shape, with a radius g, determined by the
total number of normal modes of the crystal. Thus,

w(q) = vyq (2.59)

The frequency v, at the edge of the Brillouin zone is thus equal to v,q,/2n. The
Debye temperature @y, is defined as hv,,/(kg). As shown below, @, is an inverse
measure for the vibrational mean-square amplitudes of the atoms in a crystal at
a given temperature.

As the normal modes are assumed to be uniformly distributed in reciprocal
space, the frequency distribution g(w) will be proportional to w?, that is,

g(w) = Cw? (2.60)

in which the proportionality constant C follows from the normalization condition.
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For a crystal with nN atoms,
3nN = Jg(w) dw (2.61)

For a monatomic cubic crystal, the corresponding mean-square displacement is
(Willis and Pryor 1975)
1 e
uty = —— 2 g(w) dw 2.62
<>3mN0w29() (2.62)
which may be compared with Eq. (2.58). Using the vibrational partition function,
this can be shown to be equal to

36T c)
Yy = 5 [q><—"> + 1.9 (2.63)
mk ;02 T) 4T
with
1{* y x x?
O(x) =~ dy~1—~—+_—+-- 2.64
) xfoey—ly 47 36 (264)

where x = O,/T.
In the high-temperature limit, x — 0, and Eq. (2.63) becomes
3T 3kgT

3= = 2.65
W mkg®%  4nimvd (2.652)

The mean-square displacement is again proportional to T, as it is for the
harmonic oscillator [Eq. (2.52)], but the slope of the (u?)> versus T curve is quite
different from the value of kg/(hv), predicted for the single harmonic oscillator
[Expression (2.52)]. Expression (2.65) represents the temperature dependence of
an assembly of harmonic oscillators, rather than that of a single oscillator.

In the low-temperature region, x becomes very large, and ®(x) becomes equal
to zero. We then obtain from Eq. (2.63),

e
4mky®

u? (2.65b)
that is, the mean-square displacements again will be independent of the tempera-
ture.

In any crystal, the low-frequency acoustic modes dominate at low tempera-
tures, so that the approximation that w is proportional to ¢ becomes increasingly
valid as is evident from Fig. 2.2. In particular, the T dependence of the specific
heat at very low temperatures is well predicted by the Debye approximation.

2.3.3 The Rigid-Body Model for Molecular Crystals

In molecular crystals, the separation between internal and external modes is of
importance. Except for torsional oscillations in some types of molecules, the
internal modes have much higher frequencies than the external modes. According
to expressions such as Eqs. (2.51) and (2.58), the latter are then the dominant
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contributors to the atomic mean-square displacements. This is the basis for the
rigid-body approximation developed by Cruickshank (1956), and expanded into a
more general theory by Schomaker and Trueblood (1968). The following discus-
sion is based on a treatment by Dunitz (1979).

The most general motions of a rigid body consist of rotations about three
axes, coupled with translations parallel to each of the axes. Such motions
correspond to screw rotations. A libration around a vector 2 (4y, 4,, 4;), with
length corresponding to the magnitude of the rotation, results in a displacement
or, such that

or=(Axr)=Dr (2.66)
with
0 —A; A,
D=} i, 0 — Ay (2.67)
—Ay A 0
or, in tensor notation, assuming summation over repeated indices,

where the permutation operator g;; equals + 1 when i, j, k is a cyclic permutation
of the indices 1, 2, 3; or —1 when the permutation is noncyclic; and zero when
two or more indices are equal. For i = 1, for example, only the ¢,,, and ¢, 5, terms
are nonzero. Addition of a translational displacement gives

or, = Dyr; + ¢ (2.69)

When a body undergoes vibrations, the displacements vary with time, so time
averages must be taken to derive the mean-square displacements, as we did to
obtain the lattice-dynamical expression of Eq. (2.58). If the librational and
translational motions are independent, the cross products between the two terms
in Eq. (2.69) average to zero, and the elements of the mean-square displacement
tensor of atom n, U}, are given by
1= +Lyprd + Lyzr; — 2L,3mr3 + Ty,
52 = +Lyyr} + L1 — 2L 5rir + Ty,

Y= +Ly 13+ Lyyr; — 2L 511 + Ty

(2.70)
- 2
Y2 = —Laarry — Liory + Lygryrs + Lysrirs + Ty,
noo__ 2
13 = —Layrirs + Lyyryry — Lygrs + Loy, + Ty
n o __ 2
23 = —Lyryr; + Lotk — Lysity — Lyt + Ths

where the coefficients L;; = {4;4;> and T;; = <{t;t;> are the elements of the 3 x 3
libration tensor L and the 3 x 3 translation tensor T, respectively. Since pairs of
terms such as <t;t;> and {t;t;> correspond to averages over the same two scalar
quantities, the T and L tensors are symmetrical.

If a rotation axis is correctly oriented, but incorrectly positioned, an additional
translation component, perpendicular to the rotation axes, is introduced. The
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rotation angle and the parallel component of the translation are invariant to the
position of the axis, but the perpendicular component is not. This means that the
L tensor is unaffected by any assumptions about the position of the libration axes,
whereas the T tensor depends on the assumption made concerning the location
of the axes.

The quadratic correlation between librational and translational motions can
be allowed for by including in Eq. (2.70) cross terms of the type (Dyt;>, or

Usj = Dy Dyynry + Dyt + Dyt pr + (it > = Agahieti + Bt + 8ty (271)
which leads to the explicit expressions, such as
U = 0rp2 = (30rd + (A2D1r5 — 2{AzAs oy — 2 Azt D1, — 2{A,t D1y + (11
Uy, = 010, = — A3 nry + (hAydrrs + {Aydsdrry — (A Ay 013

+ {Astory — (At oy — {Ast 01, + {Agtayrs + ity (2.72)

The products of the type {4;t;) are the components of an additional tensor,
S, called the screw tensor, as the coupling between translations and rotations
describes a screw-type motion. Unlike the tensors T and L, § is unsymmetrical,
since {(4;t;> is different from {(4;t;>. The terms involving elements of § may be
grouped as (for U,,)

gt dry — {Astyor, + ((hgty) — (At D)rs
or
S — Saary + (S22 — S1)n (2.73)

As the diagonal elements occur as differences in this expression, a constant may
be added to each of the diagonal terms without changing the observational
equations. In other words, the trace of 8§ is indeterminate.

In terms of the L, T, and S tensors, Eq. (2.70) is generalized as

Uj= GijuLli + HjuSu + Ti; (2.74)

It is clear from Eqs (2.70) and (2.72) that the arrays G, and Hj, involve the
atomic coordinates (x, y, z) = (v, 5, r;). They are listed in Table 2.2. Equations
(2.74) for each of the atoms in the rigid body form the observational equations,
from which the elements of T, L, and S can be derived by a linear least-squares
procedure. One of the diagonal elements of § must be fixed in advance, or some
other suitable constraint applied, because of the indeterminacy of T#(S). It is
common practice to set Tr(S) equal to zero. There are thus eight elements of 8
to be determined, as well as the six each of L and T, for a total of 20 variables.
A shift of origin leaves L invariant, but it intermixes T and S.

If the origin is located at a center of symmetry, for each atom at r with
vibration tensor U”, there will be an equivalent atom at —r with the same vibration
tensor. When the observational equations for these two atoms are added, the terms
involving elements of § disappear since they are linear in the components of r.
The other terms, involving elements of the T and L tensors, are simply doubled,
like the U" components.

The physical meaning of the T and L tensor elements is as follows. The
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TABLE 2.2 The Arrays G, and H;y, to be Used in Observational Equations:
Uj = GijuLy + Hijy Sy + T;; [Expression (2.74)]

Giju ki 11 22 33 23 31 12
ij
It 0 2? y? —2yz 0 0
22 22 0 x? 0 —~2xz 0
33 y? x? 0 0 0 —2xy
23 —yz 0 0 —x? xy xz
31 0 —xz 0 xy —y? yz
12 0 0 —xy xz yz —2?
Hyp ki 1 py) 33 pX) 31 12 £y 13 2
ij
11 0 0 0 0 —2y 0 0 0 2z
22 0 0 0 0 0 -2z 2x 0 0
33 0 0 0 —2x 0 0 0 2y 0
23 0 —-X X 0 0 y 0 -z 0
3 y 0 -y z 0 0 0 0 -x
12 -z z 0 0 x 0 -y 0 0

quantity T;;/;/; is the mean-square amplitude of translational vibration in the
direction of the unit vector | with components [,, [,, I, along the Cartesian axes,
and L;;1;[;is the mean-square amplitude of libration about an axis in this direction.
The quantity §;;/;/; represents the mean correlation between libration about the
axis [ and translation parallel to this axis. This quantity, like T;;/;/;, depends on
the choice of origin, although the sum of the two quantities is independent of the
origin.

The nonsymmetrical tensor S can be written as the sum of a symmetric tensor
with elements (S3; = (S;; + S;)/2 and a skew-symmetric tensor with elements
Sfi = (S; — S;)/2. Expressed in terms of principal axes, S8° consists of three
principal screw correlations {4,t;>. Positive and negative screw correlations
correspond to opposite senses of helicity. Since an arbitrary constant may be added
to all three correlation terms, only the differences between them can be determined
from the data.

The skew-symmetric part 84 is equivalent to a vector (4-t)/2 with components
(A°1);/2 = (A;t, — At;)/2, involving correlations between a libration and a perpen-
dicular translation. The components of $4 can be reduced to zero, and S8 made
symmetric, by a change of origin. It can be shown that the origin shift that
symmetrizes 8§ also minimizes the trace of T. In terms of the coordinate system

based on the principal axes of L, the required origin shifts p, are

 Sa-S8a . Su-Sn . S.-§
p, = om0 p, = D3T3 by 4 D127 0 (2.75)
Ly, + Lis Ly + Ly, Ly + Ly,

in which the carets above the letters indicate that the quantities are referred to
the principal axis system.



46  X-ray Charge Densities and Chemical Bonding

x  T(x)
g 2 1)
z
2 30 E
Ni(
< 250 4
D
=}
2 200
£
@ 150
2]
E
< 100

% 50 100 150 200 250 300
——— > Temperature (K)
FIG. 2.6 Temperature dependence of the rigid-body translational mean-square amplitudes

of quinolinic acid. The line represents the results from Eq. (2.51) with v = 44 cm ™ !. Source:
Takusagawa and Koetzle (1979).

The description of the averaged motion can be simplified further by shifting
to three generally nonintersecting libration axes, one each for each of the principal
axes of L. Shifts of the L, axis in the L, and L; directions by

Yp,=—S83/Ly; and  'py=8,,/L, (2.76)

respectively, annihilate the S,, and S, terms of the symmetrized S tensor and
simultaneously effect a further reduction in 7r(T) (the presuperscript denotes the
axis that is shifted; the subscript denotes the direction of the shift component).
Analogous equations for displacements of the L, and L; axes are obtained by
permutation of the indices. If ail three axes are appropriately displaced, only the
diagonal terms of S remain. Referred to the principal axes of L, they represent
screw correlations along these axes and are independent of origin shifts.
The elements of the reduced translation tensor T are:

T = i}l - Z (gKI)Z/I:KK
K#1
and

'Tu = fu - Z §K1§KJ/I:KK J#I (2.77)
K

The resulting description of the average rigid-body motion is in terms of six
independently distributed instantaneous motions—three screw librations about
nonintersecting axes (with screw pitches given by §11/f,“, etc.) and three
translations. The parameter set consists of three libration and three translation
amplitudes; six angles of orientation for the principal axes of L and T; six
coordinates of axis displacement; and three screw pitches, one of which has to be
chosen arbitrarily; again, for a total of 20 variables.
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TAaBLE 2.3 Rigid-Bond Test for p-Nitropyridine-N-oxide at 30 K

o(1)
N(@4)
c(10) c(6)
c(9) c(7
C)
N(5)
0(2) 0(3)
Spherical-Atom Charge-Density
Refinement Model
o(u?) ~ 0.0003 A2 a(u?) ~ 0.0002 A2
10*z3 5 10423 , 10422 5 10*23 ,

A B (A?) (A% (A?) (A%
N(4) C(6) 60 48 52 52
C(6) C(D 66 65 56 53
C(7) C(8) 55 66 52 58
C(8) Cc(9) 57 53 51 45
C(9) C(10) 62 69 55 57
C(10) N@4) 64 70 64 65
N(4) o) 46 28 41 38
C(8) N(5) 40 56 42 47
N(5) 0(2) 72 St 63 56
N(5) 0Q3) 66 42 58 50
rms discrepancy 14 5

Source: Harel and Hirshfeld (1975).

Since diagonal elements of S enter into the expression for "7},, the indeter-
minacy of 7r(S) introduces a corresponding indeterminacy in "T. The constraint
Tr(S) = 0 is unaffected by the various rotations and translations of the coordinate
systems used in the course of the analysis.

2.2.3.1 The Multitemperature Study of
Quinolinic Acid

The structure of quinolinic acid (2,3-pyridinedicarboxylic acid, C;H;N(COOH),)
has been determined by neutron diffraction at four temperatures: 298, 100, 80, and
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35 K (Takusagawa and Koetzle 1979). The rigid-body analysis indicates the largest
translational tensor component to be along Z, perpendicular to the molecular
plane at 298 K, but in the molecular plane along the X-axis, bisecting the two
carboxylic groups at the other temperatures. The librations are largest around the
two axes in the molecular plane at all temperatures. The S tensor components
are small and never larger than 0.006 A. In Fig. 2.6 temperature dependence of
the translational mean-square amplitudes is plotted, and compared with the line
calculated using expression (2.51) with v = 44 cm ™",

2.3.4 The Rigid-Bond Test

The dominance of the external modes that underlies the success of the rigid-body
model implies that bond-stretching vibrations give a minor contribution to the
atomic vibrational amplitudes. The most important internal modes are, in fact,
the torsional oscillations, and, to a lesser extent, the angie bending modes, which
have lower frequencies than those of the stretching vibrations, but do not affect
the relative amplitudes of bonded atoms 4 and B along the A—B bond. This is
the basis for the rigid-bond test as a means to test the successful deconvolution of
thermal and charge density effects in the refinement of X-ray data (Harel and
Hirshfeld 1975, Hirshfeld 1976). The method requires the calculation of the
vibration amplitudes in the direction of the atomic bonds, and is accomplished
by using Eq. (2.27).

The use of more sophisticated scattering models, in which bonding effects on
the charge density are taken into account, discussed in chapter 3, leads to a
significant improvement in the results of the rigid-bond test. An example, based
on a low-temperature analysis of p-nitropyridine-N-oxide, is given in Table 2.3.
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Chemical Bonding and the X-ray
Scattering Formalism

3.1 The Breakdown of the Independent-Atom Model
3.1.1 Qualitative Considerations

The assumption that the atomic electron density is well described by the spherically
averaged density of the isolated atom has been the basis of X-ray structure analysis
since its inception. The independent-atom model (IAM) is indeed a very good
approximation for the heavier atoms, for which the valence shell is a minor part
of the total density, but is much less successful for the lighter atoms. The lightest
atom, hydrogen, has no inner shells of electrons, so that the effect of bonding is
relatively pronounced. Because of the overlap density in covalent X—H bonds
(X = C, N, O), the mean of the hydrogen electron distribution is significantly
displaced inwards into the bond. When a spherical IAM hydrogen scattering factor
is used in a least-squares adjustment of the atomic “position,” the result will be
biased because the centroid of the density associated with the H atom is shifted
in the direction of the bond. The result is an apparent shortening of X—H bonds
which is far beyond the precision of X-ray structure determination (Hanson et al.
1973). For sucrose, for example, the differences between X-ray and neutron bond
lengths are 0.13 (1) A averaged over 14 C—H bonds, and 0.18 (3) A averaged over
eight O—H bonds (Hanson et al. 1973). The observed discrepancy between X-ray
results and spectroscopic values was first explained in terms of the electron
distribution in the 1950s by Cochran (1956) and Tomii (1958).

That the bond density is also of significance for heavier atoms is evident from
the occurrence of the spherical-atom forbidden (222) reflection of diamond and
silicon, even at low temperatures where anharmonic thermal effects (see chapter
2) are negligible. The historical importance of the nonzero intensity of the diamond
(222) reflection is illustrated by the following comment made by W. H. Bragg, in 1921:

49
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Another point of interest is the existence of a small (222) reflection (in diamond).
This has been looked for previously but without success. The structure of the
diamond cannot be explained on the hypothesis that the field of force around the
carbon atom is the same in all directions: or in other words, that the force between
the two atoms can be expressed simply by a function of the distance between the
centres. If this were so, the sphere, which wouid then represent the carbon atoms
appropriately, would adopt the closed-packed arrangement. As a matter of fact,
each atom is surrounded by four neighbours only. It is necessary, therefore, to
suppose that the attachment of one atom to the next is due to some directed
property, and the carbon atom has four such special directions: as indeed the
tetra-valency of the atom might suggest. In that case the properties of the atom
in diamond are based upon a tetrahedral not a spherical form. The tetrahedra
point away from any (111) plane in case of halif the atoms in diamond and towards
it in case of the other half. Consecutive (111) sheets are not exactly of the same
nature; and it might reasonably be expected that they would not entirely destroy
each other’s effects in the second order reflection from the tetrahedral plane. It is
this effect which is now found to be quite distinct, though small.!

The IAM model further assumes the atoms in a crystal to be neutral. This
assumption is contradicted by the fact that molecules have dipole and higher
electrostatic moments, which can indeed be derived from the X-ray diffraction
intensities, as further discussed in chapter 7. The molecular dipole moment resuits,
in part, from the nonspherical distribution of the atomic densities, but a large
component is due to charge transfer between atoms of different electronegativity.
A population analysis of an extended basis-set SCF wave function of HF, for
example, gives a net charge g of +0.4 electron units (¢) on the H atom in HF; for
CH, the value is +0.12 ¢ (Szabo and Ostlund 1989).

The atomic dipole moment can be attributed to the preferential population
of specific nonspherical atomic orbitals. In particular, this is the case for atoms
with doubly-filled nonbonding lone-pair orbitals, such as the oxygen atoms in
C—O-—H and H—O—H, or oxygen in a terminal position as it is in the carbonyl
group. An early demonstration of the bias introduced in X-ray positions of
non-hydrogen atoms was the combined X-ray and neutron study of oxalic acid
dihydrate (Coppens et al. 1969), which showed the X-ray positions of the oxygen
atoms to be systematically displaced by small amounts into the direction of the
lone pair density.

Some examples of such asphericity shifts are listed in Table 3.1. They indicate
that bond lengths (and angles) from X-ray diffraction analysis using spherical
scattering factors may be less reliable than implied by the quoted standard
deviation, which are typically a few thousands of an Angstrém. This is especially
true when no high-angle data are included, as for most of the examples listed in
Table 3.1. Since valence electron scattering is concentrated in the low-angle region,
a low sin 6// cut-off enhances the bias. But resuits from a data set including a
large number of high-order reflections will be less affected by scattering-formalism
inadequacies. This is the basis for the high-order refinement of X-ray data in

! It is interesting that, as recorded by James (1982), the original observation of the (222) reflection by
W. H. Bragg (1921) was almost certainly due to multiple scattering, later discovered by Renninger.
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TABLE 3.1 Some Discrepancies between X-ray and Neutron Positional Parameters

Nature of Shift
(X-ray Relative Magnitude (Sin 6//)max

Compound to Neutron) (A) (A™YH Reference
1 0.013 4) 0.81 Mathews and Stucky
Tetracyanoethylene oxide /O\ (1971), Mathews et al.
C C (1971
Tetracyanoethylene —C >N 0.0085 (15) 0.54 Becker et al. (1973)
2
Oxalic acid Cc—0O 0.008 (2) 0.55 Coppens et al. (1969)
N
H
Ve Brown and Levy
Sucrose C—O\ 0.008 (2) 0-80 (1973), Hanson et al.
H 1973)
and
1
/O\ 0.007 (2)
C &
. 1 . .
Ammonium oxalate H,O [0 0.013 (3) Not given Taylor and Sabine
7N\ (1972)
H H
Cyanuric acid C=0 - 0.005 (1) 0.80 Coppens and Vos
{1971), Verschoor and
Keulen (1971)
Sulfamic acid S—0 - 0.0022 (6) 0.65 Bats et al. (1977)
0.0015 (4) 1.23

Source: Coppens {1978).

which low-order reflections are eliminated from the least-squares procedure
(Jeffrey and Cruikshank 1953). The cut-off is often dictated by the need to have
a sufficient excess of observations over parameters to be refined, but there is ample
evidence that bonding effects are important to at least sin /4 = 0.8-0.9 A1, as
further discussed in chapter 5.

3.1.2 The Electron Density and the LCAO Formalism

What guidance for improving the scattering formalism can be obtained from
theory? In the linear combination of atomic orbitals (LCAQ) formalism, a
molecular orbital (MO) is described as a combination of atomic basis function ¢,,:

=3 Cyud, 3.H

To satisfy the exclusion principle, which requires the wave function to be
antisymmetric with respect to the interchange of two electrons, the wave function
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is written in terms of Slater determinants, representing an antisymmetrized
combination of occupied molecular orbitals. In the Hartree-Fock method,
correlation between the instantaneous positions of electrons of opposite spins is
neglected; each electron is assumed to be subject to the average potential of the
other electrons. The correlation energy is defined as the difference between the
exact nonrelativistic energy and the Hartree—Fock energy. A Hartree—Fock wave
function consists of a single Slater determinant.
For a system of n electrons, the single-determinant wave function is

o e gD
Y= (n) 12 : (3.2)
0@ x(n)

in which the number in brackets refers to the electron and the multiplier in front
of the determinant is a normalization factor. In often-used shorthand notation,

¥ =102 - xa()) (3.3)

As implied by Eq. (3.2), the Slater determinant is a sum over products of
molecular orbitals; in a different formulation:

V=3 g PG x2(2)- - xu(n) (3.4)
i j=2i
where the electron permutation operator P, ; 1s used, with eigenvalues +1 and —1
for even and odd permutations, respectively.

Interchange of two rows of the Slater determinant changes the sign of the
wave function, which is therefore antisymmetric with respect to interchange of
electrons. When two rows or columns are identical, the determinant is zero. The
Slater determinant wave function therefore obeys the Pauli exclusion principle for
fermions.

The wave function ¥ is a function of the 3n space coordinates and » spin
coordinates of the n electrons. The one-electron density p(r) is obtained from the
wave function by integration over all spin coordinates and the space coordinates
of all but one electron:

p(r) = Jt‘l‘]z(rz, Toevos s S1y8gvns8,)dEy - odr,, ds, - -ds, (3.9

Because the electrons are indistinguishable, this integration is independent of the
choice of the electron for which integration is omitted. Since the MOs are
orthonormal, cross products integrate to zero. This result is

o6 =Y mixt (3.6)

where n; equals 1 if the y; values are the spin orbitals describing both the spin
and space characteristics (and obtained by omitting the integration over s, in Eq.
3.5), or either 1 or 2 if the spin part has been integrated. The electron density
expression in terms of the atomic orbitals is obtained on substitution of the LCAO
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expression of Eq. (3.1), z; = Y., C;, ¢, in Eq. (3.7):
p(r) =YY P,¢,(r)¢.(r) (3.7)
nov

in which P, with elements P,,, is a density matrix. The P,, values are the populations

of the orbital product density functions ¢,(r)¢,(r), and are given by

Puv = Z niCiuC,". (3.8)

The wave function W contains all information of the joint probability
distribution of the electrons. For example, the two-electron density is obtained
from the wave function by integration over the spin and space coordinates of all
but rwo electrons. It describes the joint probability of finding electron 1 at r, and
electron 2 at r,. The two-electron density cannot be obtained from elastic Bragg
scattering.

The single-Slater determinant includes correlation between the motion of two
electrons with parallel spins that avoid each other because of the exclusion
principle (Szabo and Ostlund 1989), but correlation between the motion of
electrons with opposite spin is neglected. The wave function of Eq. (3.2) does not
prevent the two electrons from being at the same point in space, which is physically
impossible. The Slater determinant wave function is therefore described as
uncorrelated.

In a more advanced treatment beyond the single-Slater determinant Hartree—
Fock limit, additional determinants corresponding to excited-state configurations
are added to the wave function. If the occupied spin orbitals are labeled a, b, c,
etc., and the unoccupied orbitals r,s,t, etc, a single excited configuration
representing excitation from orbital a to orbital r is given by

Wad =xa Xk %a? (3.9)
The multiconfiguration wave function is represented by the expression
W =coltho) + 2 chlyid + 3 cnlyin) +- - (3.10)
ra a<b

r<s

in which the coefficients ¢, like the LCAO coefficients of Eq. (3.1), are to be
determined by energy minimization.

For a multi-Slater determinant wave function, orbitals which satisfy Eq. (3.6),
and therefore Eq. (3.7), can still be defined. For these orbitals, referred to as the
natural spin orbitals, the coefficients n; are not necessarily integers, but have the
boundaries 0 < n; < 1.

The summation of Eq. (3.7) contains one- and two-center terms for which ¢,
and ¢, are centered on the same, and on different nuclei, respectively. The
two-center terms represent the overlap density in a bond; they can only give a
significant contribution to the density if ¢,(r) and ¢,(r) have an appreciable value
in the same region of space, and are therefore not important for distant atoms.

We will give two simple examples, noting that in current work much larger
sets of basis functions are used. The LCAO molecular spin orbitals (which describe
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both the electron position and the electron spin) for the H, molecule can be
chosen as
X1 = 0,ls = (154 + lsp)a

12 = 0,150 = (I + 1s)p
X3 =0,1s0 = (1s, — lsg)a
Yo = 0,15B = (Is, — 155)B, 3.11)

where the subscripts 4 and B label the two hydrogen atoms. The Slater
determinant wave function for the configuration (o, 1s)* = (x,)(x,) is given by

L) (1)
= = 10,15(Da, 15} [(DAQR) ~ fDx@)]  (3.12
0 )~y PO RIEMD — e (12

In this configuration, both electrons are in the same space orbital, but in
different spin orbitals. If the electrons would have the same spin, ¥ would be zero,
as required.

A second example is the minimal-basis-set (MBS) Hartree—Fock wave function
for the diatomic molecule hydrogen fluoride, HF (Ransil 1960). The basis orbitals
are six Slater-type (i.e., single exponential) functions, one for each inner and
valence shell orbital of the two atoms. They are the 1s function on the hydrogen
atom, and the 1s, 2s, 2po, and two 2pn functions on the fluorine atom. The 2sg
function is an exponential function to which a term is added that introduces the
radial node, and ensures orthogonality with the 1s function on fluorine. To indicate
the orthogonality, it is labeled 2s, ;. The orbital is described by

25, p = 25¢ — Sy (3.13)

1

— 2—1/2

where the overlap integral S,,, = | 1sp2s¢ dt.
A Hartree—Fock calculation leads to the following LCAOs, each occupied by
two electrons:

1o = 1.000(1sp) + 0.012(2s ) + 0.002(2pay) — 0.003(1Lsy)
20 = —0.018(1sp) + 0.914(2s ;) + 0.090(2pay) — 0.154(1sy)
3¢ = —0.023(1sp) — 0.411(2s, ;) + 0.711(2pag) — 0.516(1sy)

lm, = (2pny e
In_y = (@2pr_)e (3.14)

The first 16 and the last two 2pn molecular orbitals are nonbonding orbitals,
while the 20 and 3¢ orbitals are the bonding orbitals of the HF molecule.
The corresponding electron density is, according to Eq. (3.6), given by

p(r) = 2.00(1s5)2 + 20025, £)* + 1.03(2pag)* + 2.00Q2pm . )?
+2.00Q2pm_,)? + 0.29(1s,y)? — 0.80(2s , £ )(2po)
+0.292s  ¢)(1sy) + 1.522pos)(1sy) (3.15)

in which terms with coefficients <0.02 have been omitted.
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The density expression (3.15) contains several types of terms, which are to be
considered in formulating an advanced X-ray scattering formalism:

(1) atom-centered, such as (1sg)?, (25, ¢)%, and (2pog)’.

(2) atom-centered cross terms, such as (2s, ¢)}(2pog), which integrate to zero as the
basis functions on the same atom are orthogonal, but correspond to a migration
of the electron density from the negative to the positive lobe of the product function.

(3) two-center terms, such as (2po)(1s,), which represent the overlap density in the
bond.

In a Mulliken population analysis, the electron density of the overlap terms is
equally divided between the two atoms. Since the overlap integrals S(2s, ¢ )(1sy)
and S(2pog)(lsy) are much smaller than 1, the hydrogen atom is positively
charged.

In summary, the electron density for HF as described by Eq. (3.15) includes
the effects of charge transfer between atoms, atomic orbital overlap, and preferential
population of lone-pair orbitals, which are neglected in the independent-atom
scattering formalism.

3.2 Improved Scattering Models
3.2.1 The Spherical Atom Kappa Formalism

A simple modification of the IAM model, referred to as the x-formalism, makes it
possible to allow for charge transfer between atoms. By separating the scattering
of the valence electrons from that of the inner shells, it becomes possible to adjust
the population and radial dependence of the valence shell. In practice, two
charge-density variables, P,, the valence shell population parameter, and x, a
parameter which allows expansion and contraction of the valence shell, are added
to the conventional parameters of structure analysis (Coppens et al. 1979). For
consistency, P, and « must be introduced simultaneously, as a change in the
number of electrons affects the electron—electron repulsions, and therefore the
radial dependence of the electron distribution (Coulson 1961).
In the x-formalism, the atomic density is formulated as

Patom = Peore T p’valence(Kr) = Peore T Pukspvalence(m‘) (3.16)

The parameter k scales the radial coordinate r; when x > 1, the same density is
obtained at a smaller value of r, and the valence shell is therefore contracted.
Conversely, for k < 1, the valence shell is expanded. The x> factor satisfies the
normalization requirement

Ndn J‘pvalence(k‘r)r2 dr =1 3.17)

As the corresponding unperturbed density is normalized to 1, that is,
47 § Pratencelr)r? dr =1, N equals x>,

It is assumed in Eq. (3.16) that the inner or core electrons are not perturbed.
There is abundant support for this approximation (Bentley and Stewart 1974),
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though very high resolution studies (Deutsch 1992) suggest that small devia-
tions predicted by theory (Hirshfeld and Rzotkiewicz 1974) are accessible experi-
mentally.

The scattering factor of the valence-density component in Eq. (3.16) is
obtained by the Fourier transform

f(/alence = <[PvalenceK:gpvzilenc‘,e(xr) €xXp (27!iS'l‘) dr (318)

By replacing r and S in the exponent by xr and S/, respectively, and writing
k3 dr = 4nkc*r? dxr, one obtains

f:'a]ence(S) = fvalence(S/K) (3.19)

We note that Eq. (3.19) again illustrates the inverse relation between direct
and scattering space, a contraction of charge density corresponding to an
expansion in scattering space, and vice versa. Equation (3.19) implies that the
k-modified scattering factor can be obtained directly from the unperturbed 1AM
scattering factors tabulated in the literature.

In summary, the k-structure factor formalism is

FH) = Y [P, ofcore(H) + Pi o fi vatence(H/1)} exp QuiH 1) T(H)]  (3.20)

where both scattering factors f; .o and f; ,ajence are normalized to one electron,
and P, and P;, are the core and valence electron populations, respectively.

3.2.2 Modified Spherical Scattering Factor for the
Hydrogen Atom

Stewart, Davidson, and Simpson (SDS), in a seminal study published in 1965,
addressed the bonding deformation of the hydrogen atom by fitting a flexible
spherical H-atom form factor to the molecular scattering of a high-quality
theoretical density of the hydrogen molecule. Though charge transfer between
atoms is absent in this homonuclear diatomic molecule, the bonded atom is
contracted considerably relative to the isolated H atom (x = 1.16), and the
centroid of its electron density is shifted by 0.07 A into the bond, relative to the
proton position. The fit to the density has a mean error of only 0.11%; compared
with 7.12% for the isolated 1s proton-centered density. The SDS form factor for
hydrogen has become the standard form factor in X-ray structure analysis. An
even better fit with a mean error of 0.013%; is obtained for an H atom polarized
into the bond.

It is not possible to determine k for a hydrogen atom directly from
experimental X-ray data, because its value correlates strongly with the temperature
parameter due to the absence of unperturbed inner-shell electrons. The use of
neutron temperature parameters provides an alternative. Combined analysis of
X-ray and neutron data on glycylglycine and sulfamic acid suggests that for X—H
(X = C, N) groups, the H atom is more contracted than for the H, moiecule, with
a k value as large as 1.4 for both C—H and N—H bonds (Coppens et al. 1979).
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FIG. 3.1 Scattering factors for the hydrogen atom. IAM, free atom; SDS bonded atom as
in H,, according to Stewart et al. (1965); x = 1.4, IAM density contracted with a kappa
parameter equal to 1.4.

The kpf* = 1.4 value seems large, and possibly corresponds to an overestimate of
the contraction, as the analysis depends on the reliability of the neutron
temperature factors. Nevertheless, it has been used successfully. There is no doubt
that the contraction of the hydrogen-atom density must be taken into account in
accurate structure analysis.

Several H-atom scattering factors are compared in Fig. 3.1.

3.2.3 Examples of Results Obtained with the
k-Formalism

Application of the kappa formalism leads to net charges in good agreement with
accepted electronegativity concepts, and molecular dipole moments close to those
from other experimental and theoretical methods (Table 3.2).

In agreement with theoretical prediction, the experimental analysis shows the
more positive atoms to be contracted. This is explained by the decrease in
electron—electron repulsions, or, in a somewhat different language, the decreased
screening of the nuclear attraction forces by a smaller number of electrons. This
contraction is incorporated in Slater’s rules for approximate, single exponential
(and therefore nodeless), hydrogen-like orbital functions (Slater 1932). For a 2p,
orbital of a second-row atom, for example, the orbital function is given by

$(2p,) = Ny, x exp (—cr/2a,) (3.21)

in which N is a normalization factor, x is the component of r along the x axis,
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TABLE 3.2 Comparison of Dipole Moments from «x-Refinement of X-ray
Data with Theoretical Values (D)

Other
X-Ray Data Experimental

(x-Refinement) Theoretical Values

Sulfamic acid (78 K) 9.6 (6) 9.33 10.2*
12.2°
13.3¢
Formamide (90 K) 4.4 (5) 43 394
407
Glycylglycine (82 K) 236 (1.3) 27.8¢
p-Nitropyridine-N-oxide 0.4 (1.0) 0.69°
SCN7™ in NH,SCN 0.8 (4
SCN™ in NaSCN 1.3 (6)
* In dimethyl sulfoxide.
"In N-methylpyrrolidine.
¢ In N,N-dimethylacetamide.
¢ Gas phase.
¢In H,O.
" in benzene.
}
¥
10+ ~

q, net charge —

100 -075 -050 -025 O 025 050 075 100

FIG. 3.2 Relation between x and g (net charge) for N atoms in a number of structures: (a),
(b) glycylglycine; (c) formamide; (d), (e) p-nitropyridine N-oxide; (f) sulfamic acid; (g), (h)
NH,SCN; (i) NaSCN; (j), (k) KN;. Bars indicate estimated standard deviations. The full
line is the relation predicted by Slater’s recipe for atomic orbital exponents (Coppens et al.
1979). The line has been raised at ¢ = 0 by a factor equal to the ratio of the Slater exponent
(3.9 au ™ '), and the energy-optimized exponent for the nitrogen n = 2 shell (3.84 au™ ') given
by Clementi and Raimondi (1963).
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and aq, is the Bohr radius, equal to 0.5292 A. According to the rules, ¢ is equal to
the nuclear charge Z, minus 0.35 for each other electron in the n = 2 shell, and
minus 0.85 for each s electron in the n = | shell. For a neutral nitrogen atom, this
gives ¢ = 7 — 2-0.85 — 4-0.35 = 3.9. Since, for every additional valence electron,
¢ is reduced by 0.35, the slope dc/dg (g being the net charge) is predicted to be
0.35/3.9, or about 9%,

The experimental i/g relationship for a number of nitrogen-containing
molecules is shown in Fig. 3.2. The nitrogen atoms included ranged from the ter-
minal atoms in the azide ion in KNj, with net charges of —0.080 (4) ¢; to the
central atom of the azide ion, which is positive by 0.66 (6) charge units; and the
N atom in the ammonium ion in NH,SCN, which has a net charge of about 0.9 e.
The observed slope of the curve is in remarkable agreement with Slater’s
recipe.

Results similar to those for the nitrogen compounds discussed here have been
obtained by analysis of C, N, and O atoms in a number of nucleotides and
nucleosides (Pearlman and Kim 1985). Finally, a test of the kappa refinement
using the theoretical densities of 28 diatomic molecules proved it to be quite
successful in reproducing the theoretical radial distribution of the spherical
component of the atomic density (Brown and Spackman 1991).

3.2.4 The Multipole Description of the Charge
Density of Aspherical Atoms

3.2.4.1 General Considerations

The k-formalism accounts for charge transfer between atoms. However, expressions
(3.7) and (3.15) demonstrate that an advanced X-ray scattering formalism must
also contain nonspherical density functions. This is most successfully accomplished
in models based on atom-centered multipolar functions. After a number of early
studies proved the viability of this approach (DeMarco and Weiss 1965, Dawson
1967, Kurki-Suonio 1968), Stewart in 1969 introduced a generalized scattering
formalism, based on spherical harmonic density functions centered on each of the
atomic nuclei.

The atom-centered models do not account explicitly for the two-center density
terms in Eq. (3.7). This is less of a limitation than might be expected, because the
density in the bonds projects quite efficiently in the atomic functions, provided
they are sufficiently diffuse. While the two-center density can readily be included
in the calculation of a molecular scattering factor based on a theoretical density,
simultaneous least-squares adjustment of one- and two-center population param-
eters leads to large correlations (Jones et al. 1972). It is, in principle, possible to
reduce such correlations by introducing quantum-mechanical constraints, such as
the requirement that the electron density corresponds to an antisymmetrized wave
function (Massa and Clinton 1972, Frishberg and Massa 1981, Massa et al. 1985).
No practical method for this purpose has been developed at this time.

In a non-atom-centered deformation model, due to Hellner and coworkers
(Hellner 1977, Scheringer and Kotuglu 1983), the bonding density is described
by “charge clouds” located between bonded atoms and in lone-pair regions.
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Application to hexacyanobenzene indicates an improved fit to the 120 K experi-
mental data (Driick and Kotuglu 1984). But interpretation of the results is not
straightforward, because such a model does not deconvolute charge density and
thermal motions effects, and is not well suited for comparison with theory and
derivation of electrostatic properties.

A number of different atom-centered multipole models are available. We
distinguish between valence-density models, in which the density functions represent
all electrons in the valence shell, and deformation-density models, in which the
aspherical functions describe the deviation from the IAM atomic density. In the
former, the aspherical density is added to the unperturbed core density, as in
the x-formalism, while in the latter, the aspherical density is superimposed on the
isolated atom density, but the expansion and contraction of the valence density
is not treated explicitly.

3.2.4.2 Definition of Multipolar Density
Functions

Atomic density functions are expressed in terms of the three polar coordinates r,
f, and ¢. In the multipole formalism, the density functions are products of
r-dependent radial functions and 8- and ¢-dependent angular functions. The angular
functions are the real spherical harmonic functions y,, ., (6, ¢), but with a normaliza-
tion suitable for density functions, further discussed below. The functions are well
known as they describe the angular dependence of the hydrogenic s, p, d, f. . . orbitals.

The functions y,,, are linear combinations of the complex spherical harmonic
functions Y,,,. Including normalization, the latter are defined as

W[ @ D= m])
Yim(0, ) = ( 1)[ an (I + |m|)!

with —/ < m < [. The term (—1)™ is referred to as the Condon-Shortley phase
factor (Condon and Shortley 1957). The functions P}™ cos () are the associated
Legendre functions, defined as (Arfken 1970)

d i+tm 1
Pr(x)=(1 —x*)m™? (dx) o (x? — 1) (3.23)

The first terms of P™ cos (6) are listed in Table 3.3.
The real spherical harmonics are given by

1/2
J P\ cos (0) expim¢p  (3.22)

Yio= Yo (3.24a)
for m = 0, and, for m > 0, by
Yime = (= D" + ¥ _)/242 (3.24b)
and
Yim- = (_ I)m( Ylm - Y;, —m)/(zl/zi) (324C)
Substitution of Eq. (3.22) gives

Qi+ (—|m)!
/ + 9’ = ‘ ~
Yim+ (6. 9) [27{(1 + 000) (I + [m])!
= N, P{'(cos 8) cos m¢ (3.25a)

1/2
} PJ™ cos (@) cos m¢
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TABLE 3.3 The Associated Legendre Functions
(x = cos 0)

Plx)=(1 = x2)¥2 =sin 0

Pl(x) =3x(1 — x)"? =3 cosfsinf

P%(x) =31 — x%) = 3sin? 0

Pi(x) = 3(5x2 = I)(1 — xH)1"? = 3(5cos? 0 — 1) sin 0

P3(x) = 15x(1 — x?) = 15cos Osin? 0

P3(x) = 15(1 — x2)¥2 = I5sin30

Pl(x) = 3(Tx* - 3x)(1 — x?)!2 = §(7 cos* 8 — 3 cos ) sin 0
Plx)y=13(7x? — (1 — x?) = $(Tcos? @ — 1)sin 0
P3(x) = 105x(1 — x2)*>? = 105 cos fsin® @

Pi(x) = 105(1 — x*)? = 105 sin* @

with 0 < m < I, and similarly

Yim—(8, ) = N, P{'(cos 8) sin m¢ (3.25b)

3.2.4.3 Symmetry Properties of the Spherical
Harmonic Functions

Form =0, y,o, and Y, are identical, and real. For | = 0, mis also zero (0 < m < [),
and the function is spherically symmetric. When ! # 0 and m = 0, the ¢ dependence
disappears and the Y, = y,, are cylindrically symmetric around the z axis.

The [ even functions are symmetric with respect to inversion through the
atomic site, while the ! odd functions are antisymmetric. The functions allowed
for a particular site may be symmetry restricted. An atom at a centrosymmetric
site, for example, will have zero populations for the | odd dipolar and octopolar
multipole functions. A full list of symmetry restrictions is given in appendix D
(Kurki-Suonio 1977a). Functions with ! < 3 are illustrated in Figs. 3.3 and 3.4.

3.2.44 Real Spherical Harmonics as Density
Functions

When y,,, (p= 1) represent atomic orbitals, y7,, is a probability distribution,
which should integrate to 1. The normalization condition is therefore

f Ve, dQ =1 (3.26)

in which dQ is the volume element in 8¢ space.

The normalization expression (3.26) is appropriate for wave functions. For a
charge density function, a different normalization must be used, because the charge
is given by the integral over the first power of the function. The density functions
in general use are labeled d,,,, and are defined by the normalization

Jld,,,,,,l dQ=2forl>0 and Jld,,,,,,l dQ=1for!=0 (3.27)
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FIG. 3.3 Graphic representation of some multipolar functions: (from left to right) a dipole
(/ = 1), a quadrupole (/ = 2), and an octupole (I = 3) function. Functions are negative with
the dotted areas. If the x axis is horizontal and the y axis is vertical, the functions are x,
x% — y? and x3 — 3xy?, respectively.

3 [

FIG. 3.4 Drawing of some dipolar, quadrupolar, and octupolar functions. Source: Hansen
(1978).
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This normalization implies that a population parameter equal to 1 corresponds
to a population of one electron for the spherically symmetric function dy,. The
nonspherical functions (I > 0) represent a shift of density between regions of
opposite sign. They have both positive and negative lobes which integrate to equal
but opposite numbers of electrons. For these functions, the normalization expression
(3.27) ensures that the population parameters represent the number of electrons
shifted from the negative to the positive regions.
Analogous to Eq. (3.25), we get, for the functions d,,,,,,

dim+ = N1, P)'(cos 8) cos m¢ (3.28a)
and
dy,— = N, Pl(cos 0) sin m¢ (3.28b)

where N, is the normalization factor defined by Eq. (3.27).

The functions d,,, are related to the functions c,,,, in which the angular
dependence is expressed in terms of the direction cosines x, y, and z in a Cartesian
coordinate system, as in ¢,, . = xz. The Cartesian functions ¢, are equal to d,,,,,
except for an Im-dependent factor L,,, or

dlmp = leclmp (329)

Expressions for c,,, with I < 4 and the normalization factors L,, are given in
appendix D, together with the factors C,,, defined by

Clmclmp = P;"(COS 0 ;:10:::$ (330)
Combining Egs. (3.28) and (3.29) with Eq. (3.30) gives
L,
Nip=— 3.31
= (3.31)

The functions and their normalizations are summarized in Fig. 3.5, which can
be used for the rapid derivation of equations similar to Eq. (3.31).

The spherical harmonic density functions are referred to as multipoles, since
the functions with I = 0, 1, 2, 3, 4, etc., correspond to components of the charge
distribution p(r) which give nonzero contributions to the monopole (I = 0), dipole
(I = 1), quadrupole (I = 2), octupole (I = 3), hexadecapole (! = 4), etc., moments
of the atomic charge distribution.

The electrostatic moments of a distribution p(r) in terms of the ¢,,,, are given by

.ulmp = J‘p(r)clmprl dr (332)

where g, is an electrostatic moment of order I. The factor r' enters in Eq. (3.32)
because the c,,, are defined in terms of the direction cosines x, y, and z. The

D

im

Yimp

d!mp

Mim L N Nim FIG. 3.5 Definition of the normalization coefficients
Im d for the spherical harmonic functions. Relations such
P"cos B) €05 o as Yy, = D, d,,,, are implied by the direction of the
[} .
sin

Cimy —
PG, ¢ arrows,
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definition of the electrostatic moments and the derivation of electrostatic quantities
from the electron density are treated in chapters 7-9.

For sites of cubic symmetry the point-group symmetry elements mix the
spherical harmonic basis functions. As a result, linear combinations of spherical
harmonic functions, referred to as Kubic harmonics (Von der Lage and Bethe
1947), must be used.

A more detailed discussion of the complex and real spherical harmonic functions,
with explicit expressions and numerical values for the normalization factors, can be
found in appendix D.

3.2.4.5 Choice of Radial Functions

To preserve the shell structure of the spherical component of the valence density,
the radial function of the bonded atom may be described by the isolated atom
radial dependence, modified by the x expansion—contraction parameter.

The deformation functions, however, must also describe density accumulation
in the bond regions, which in the one-center formalism is represented by the
atom-centered terms. They must be more diffuse, with a different radial dependence.
Since the electron density is a sum over the products of atomic orbitals, an
argument can be made for using a radial dependence derived from the atomic
orbital functions. The radial dependence is based on that of hydrogenic orbitals,
which are valid for the one-electron atom. They have Slater-type radial functions,
equal to exponentials multiplied by r' times a polynomial of degree n — 1 — 1
in the radial coordinate r. As an example, the 2s and 2p hydrogenic orbitals are
given by

R, =27 Y2(Z/ag)>*(1 — Zr[2ay) e #1122 (3.33a)
and
Ry, =247 V2(Z/ag)®?r e~ %124 (3.33b)

where Z is the nuclear charge and a, is the Bohr radius, r being expressed in A.
Note that the polynomial (1 — Zr/2a,) in R, introduces a radial node, and assures
orthogonality to the Is orbital, a requirement aiso introduced in the orbital
function Eq. (3.13). For density functions the radial node is generally omitted.
Simple normalized, nodeless density functions based on hydrogenic orbitals are
defined as?

yt 3
—(k'r)"Wexp (—K'(r) (3.34)
(n, + 2)!

in which the symbol x' is used to describe the expansion—contraction parameters
of the deformation functions. Such functions have been found to give a good fit
for the nonspherical valence shell components of first- and second-row atoms,
especially when an adjustable k' parameter is included, as i Eq. (3.34). This «’
parameter is, in general, numerically different from the x parameter applied to the
spherical valence shell density, and may be selected to vary among the deformation
functions on a single atom.

Ri(r)=«"

? The normalization follows from the integral [ x"e *¥dx = nlp™" " (n > — 1, u > 0), with n = i, + 2
(integration over three dimensions).
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TABLE 3.4 Best Single ¢ Density Values
(Bohr ') for the Valence Shells of a Number

of Atoms

2s 2p Average
Carbon 3.216 3.136 s2p? 3.176
Nitrogen 3.947 3.934 s?p® 3940
Oxygen 4.492 4.453 s2p*  4.469
Fluorine 5.128 5.110 sip® 5115

3s 3p Average
Silicon 3.269 2.857 s2p? 3.063

Source: Clementi and Raimondi (1963).

Energy-optimized, single-Slater { values for the electron subshells of isolated
atoms have been calculated by Clementi and Raimondi (1963). For the electron
density functions, such { values are to be muitiplied by a factor of 2. Values for
a number of common atoms are listed in Table 3.4, together with averages over
electron shells, which are suitable as starting points in a least-squares refinement
in which the exponents are subsequently adjusted by variation of k’. A full list of
the single { values of Clementi and Raimondi can be found in appendix F.

The coefficients n, have to obey the condition n, = I, imposed by Poisson’s
electrostatic equation, as pointed out by Stewart (1977). The radial dependence of
the multipole density deformation functions may be related to the products of
atomic orbitals in the quantum-mechanical electron density formalism of Eq. (3.7).
The ss, sp, and pp type orbital products lead, according to the rules of multiplica-
tion of spherical harmonic functions (appendix E), to monopolar, dipolar, and
quadrupolar functions, as illustrated in Fig. 3.6. The 2s and 2p hydrogenic orbitals
contain, as highest power of r, an exponential multiplied by the first power of r,
as in Eq. (3.33). This suggests n, = 2 for all three types of product functions of
first-row atoms (Hansen and Coppens 1978).

Similarly, octupoles and hexadecapoles can be thought of as arising from 2p3d
and 3d3d atomic orbital products, which leads to n, = 3 and 4, respectively. The

FiG. 3.6 Hlustration of the product of two spherical harmonic functions: p,-p, = d,,.
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TABLE 3.5 Position of Radial Maxima (A) for
Different n, (x = 1 and { Values of Table 3.4)

[= 1 2 3 4
= 2 2 3 4
Carbon 0.333 0.333 0.500 0.667
Nitrogen 0.276 0.276 0414 0.551
= 4 4 4 4
Silicon 0.691 0.691 0.691 0.691
n = 4 4 6 8
Silicon 0.691 0.691 1.037 1.382

latter reasoning is less convincing as 3d orbitals are not occupied for first-row
atoms, and the higher multipoles solely represent the density in the bonds around
an atom. Nevertheless, it provides a guideline which has proven to be useful.

The radial maxima of functions described by Eq. (3.34) are at n,/(x({), as found
by substituting R into the equation dR/dr = 0. The positions of these maxima for
k = 1 for a number of atoms are given in Table 3.5.

For second-row atoms, the orbital product argument leads to n, = 4 for all
deformation functions. However, this model gives the same radial functions for
all multipoles, and a radial maximum at 0.691 A (Table 3.5). Since this is much
less than half the 2.35 A Si—Si bond length, such a function cannot very well
describe the bonding density in an Si—Si bond. An analysis of the highly accurate
Pendellésung data on silicon shows the error function TwA? to be lower by a
factor of better than 2 for n, values increasing with l: n, = 4,n, =4,n; =6,n, =8,
compared with the n, = 4 model. We note that a recent analysis of H;PO, shows
that the phosphorus density functions in this compound are better fitted with n,
values 6, 6,7, 7 for I = 1, 2, 3, 4, respectively (Moss et al. 1995).

The difference in treatment between the spherical and aspherical components,
described above, can be rationalized by the fact that, for covalently bonded
systems, the aspherical deformation density terms also represent the accumulation
of charge in bonds between atoms. But, for transition metal atoms, the asphericity
of the charge distribution is mainly due to preferential occupancy of selected
ligand-field stabilized d-orbital levels, as the charge accumulation in the metal-
ligand bonds tends to be small. Though products of d orbitals lead to density
functions with n, = 4 and 6 for first- and second-row transition metal elements,
respectively, a Hartree—Fock radial dependence for the metal atom deformation
functions is found to give a better fit to the scattering intensities of first-row
transition metal complexes (Elkaim et al. 1987).

Recommended values for n; are summarized in Table 3.6. The example of
H,PO,, quoted above, shows that they may not always be the optimal choice.

Other types of radial functions have been applied, including Gaussian-type
functions (Stewart 1980), and harmonic oscillator wave functions (Kurki-Suonio
1977b).
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TABLE 3.6 Recommended Values of n, in the Radial Density Function

Expression

Dipole Quadrupole Octupole Hexadecapole
! 1 2 3 4
First-row atoms 2 2 3 4
Second-row atoms 4 4 6 8

Source: Hansen and Coppens (1978).

3.2.4.6 The Multipole Density Formalism

Combining the angular and radial functions discussed above leads to a valence-
density formalism in which the density of each of the atoms is described as (Hansen
and Coppens 1978)

!

lmax
Puc(0) = P peorelt) + Pok®Pratence(kr) + 3, KZR(k'1) 3 Py dim 2 (6, 9)  (3.35)
=0 0

m=

The two leading terms in Eq. (3.35) are identical to the x-formalism of Eq. (3.16).

The aspherical features of the density are described by the summation added
to the x-expression. The summation includes an additional monopole, which may
be omitted for first- and second-row atoms, but is necessary to describe the outer
s-electron shell of transition metal atoms, which is much more diffuse than the
outermost d shell.

The multipole formalism described by Stewart (1976) deviates from Eq. (3.35)
in several respects. It is a deformation density formalism in which the deformation
from the JAM density is described by multipole functions with Slater-type radial
dependence, without the k-type expansion and contraction of the valence shell.
While Eq. (3.35) is commonly applied using local atomic coordinate systems to
facilitate the introduction of chemical constraints (chapter 4), Stewart’s formalism
has been encoded using a single crystal-coordinate system.

The aspherical density formalism of Hirshfeld is a deformation model with
angular functions which are a sum over spherical harmonics. It will be described
in more detail in section 3.2.6. All three models have been applied extensively in
charge density studies (for a comparison, see Lecomte 1991).

3.2.5 Aspherical Atom Scattering Factors

To obtain the atomic form factor according to the multipole formalism, we apply
the Fourier transform

LSy = Jpj(r) exp 2niS-r) dr (3.36)

Substitution of the atomic density expression of Eq. (3.35) gives the aspherical
atom scattering factor of atom j as

lm.n l
fJ(S) = Pj.c j.core(S) + Pj.u j.valence(S/K) + Z Z Z lepflmp(S/K,) (337)

I=0m=0 p
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in which the multipole scattering factors f,,,(S) are the orientation-dependent
Fourier transforms of the spherical harmonic deformation functions, and p = +.
Fourier transformation of the spherical harmonic functions is accomplished
by expanding the plane wave exp (27iS-r) in terms of products of the spherical
harmonic functions. In terms of the complex spherical harmonics Y,,(9, ¢), and
Y. (B, 1), the expansion is given by (Freeman 1959, Cohen-Tannoudji et al. 1977)

exp (2niS 1) = 4n Z Z i'i2nSr) ¥,,,(0, $) YE(B, 7) (3.38)
I=0m=-1
where j, is the /th order spherical Bessel function (see, e.g. Arfken 1970, p. 521),
and 0 and ¢, and [ and y are the angular coordinates of r and S, respectively (Fig.
3.7). The first three terms of j, are listed in Table 3.7.

Combining terms with m = —/ and m = |, gives the expansion in terms of the
real spherical harmonic functions, which we will use to evaluate the Fourier
transform of the real density functions:
exp 2niS-r)y =Y i,(2nSr)21 + 1)

=0

X Z (2—6,0) E ; P*(cos B) PT(cos ) cos {m(¢—7p)}  (3.39)
We need to evaluate
Jim+(S) = J‘Rl(") Ay + (0, @) exp 2riH ) dr (3.40)

as well as f,, _(S).
Substitution of Eq. (3.38), and writing the explicit expression for d,,, (0, ¢),
gives

Sins(8) = N f f f Ry(r)PI'(cos 0) cos m 3. 1%,2nSr)(2 + 1)
=0

i (2--0,.0) EH— ;' P (cos 0) P (cos B) cos {m'(¢p — y)}r* sin 0 dOdp dr  (3.41)

c c*
r H
0 Y
> _;’ b > —/' b*
a a*

FiG. 3.7 Definition of the angles 0, ¢, f, and 7.
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TABLE 3.7 The Low-Order
Spherical Bessel Functions

sin X

Jolx) =

) sinx  cos X
hiy)=—0—
x?

X

3 1) i 3
Jax)=|— ~ —]sinx — = cosx
X3 x x?

Since the associated Legendre polynomials (and the spherical harmonics) form an
orthogonal set, only terms with [ = [" and m = m’ do not vanish in the integral of

Eq. (3.41). Furthermore, for the 6 integration,

" ! 2 !
f PJ(cos 6)? sin 0 dO) = f Prztdz = > UAImD!
0 -1 I+ D —|mh!

as implied by the normalization factor of Eq. (3.22), and for ¢:

2n
J cos me¢ cos m(¢p — y) d¢p = m cos my when m # 0, and 2n when m =0
0

Substituting these results in Eq. (3.40) gives
Jim+(8) = 4mi'(ji >Ny o P1'(c0s ) cos my = 4ni'(ji> dy i (B,7)  (3.42)

or, in general,

ﬁmp(s) = 47”.[<jl> dlmp(ﬂ’ V) (343)
where {(j;», the Fourier—Bessel transform, is the radial integral defined as
Gy = Jj,(ZnSr)R,(r)rz dr (3.44)
The quantity
X M 2 S ool
oy =J 4nr?p(r) ST Ef dnr?p;(r)jo dr (3.45)
0 2nSr °

which we encountered in the expression (1.28) for the scattering factor of the
spherical atom and in expression (3.38), is the zero-order function in this series.

Expressions (3.42) and (3.43) show that the Fourier transform of a direct-space
spherical harmonic function is a reciprocal-space spherical harmonic function with
the same /, m. This is summarized in the statement that the spherical harmonic
functions are Fourier-transform invariant. It means, for example, that a dipolar
density described by the function d,,, oriented along the ¢ axis of a unit cell, will
not contribute to the scattering of the (hk0) reflections, for which H is in the a*b*
plane, which is a nodal plane of the function d,(f, 7).

The functions {j,» for Hartree~Fock valence shells of the atoms are tabulated
in scattering factor tables (International Tables for X-ray Crystallography 1974,
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International Tables for Crystallography 1992). The function {j,> for Slater-type

radial functions can be expressed in terms of a hypergeometric series (Stewart

1980), or in closed form (Avery and Watson 1977, Su and Coppens 1990). The

latter are listed in appendix G. As an example, for a first-row atom quadrupolar

function (I = 2) with n, = 2, the integral over the nonnormalized Slater function is
48K?

Gyo(K, ) = J"A exp (—{r)j(Sr) dr = (?;4-%2)4 (3.46)
with K = 4z sin 8//. The value of {j,) is subsequently obtained by multiplication
with the normalization factor defined in Eq. (3.34). Since the Hartree~Fock atomic
wave functions are available in terms of an expansion of Slater-type functions
(Clementi and Roetti 1974), Hartree—Fock scattering factors can easily be
evaluated using the closed-form expressions of appendix G.

In summary, the structure factor expression corresponding to Eq. (3.37) is
given by

F(H) = Z I:{Pj.cfj:.core(H) + Pj,vfj,valence(H/K)

J

Inax 1

F4n Y Y PGS/ ) 1 (B, ?)} exp (2niH r;) T;(H)]
1=0m=0
(3.47)

in which T;(H) is the temperature factor, and the terms in the deformation
scattering factors are defined by Eq. (3.43) and (3.44).

3.2.6 The Aspherical Density Functions of the
Hirshfeld Formalism

Hirshfeld (1971) was among the first to introduce atom-centered deformation
density functions into the least squares procedure. Hirshfeld’s formalism is a
deformation model, in which the leading term is the unperturbed 1AM density,
and the deformation functions are of the form cos" 6, where 0, is the angle
between the radius vector r; and axis k of a set of (n + 1)(n + 2)/2 polar axes on
each atom j, as defined in Table 3.8 (Hirshfeld 1977). The atomic deformation on
atom j is described as

4 4

Ap) =3 Y hy= Y Y NP,,r/exp(—oar)cos" b, (3.48)
n=1 k n=1 k

in which r; is the distance from the atom center j, « is the exponential coefficient

in the Slater-type radial function, and the P,, coefficients are the population

parameters. The normalization factors N, are defined somewhat differently from

the normalization for the functions d,,,, [Eq. (3.27)] by

jlh,,kl dQ =1 (3.49)

which gives

iy n+3
N =(n+ 1)a (3.50)

4n(n + 2)!
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TABLE 3.8 Direction Cosines in the Hirshfeld Formalism and
their Relation to the Spherical Harmonics Density Functions

Corresponding Spherical
Harmonics and their

n Directions Number

0 doo (1)

1 100, 010, 00T dym (3)

2 110, 110, 101, 107, O11, 01T Ay (5Y+dyo (1)

3 110, 170, 101, 10T, 011, O1T, 111, dy, (N +d,, (3)
ITT, 11T, 1Tt

4 100, 010, 001, all, 121, 11a, tal, A () +dy,, (5) +dgo (1)
121, 113, 11, tad, Tla, 21T, Tal,

1Ta?

am

For a given value of n, the functions h,, are identical to a sum of spherical
harmonics with [ =n, n—2,n—4,...,(0,1) for n > 1. The relationships are
summarized in Table 3.8. For n = 0, 1, the Hirshfeld functions are identical to the
spherical harmonics with [ = 0, 1, but, starting with the n = 2 functions, lower-
order spherical harmonics are included for each n value. Unlike the spherical
harmonics, the h,, functions are therefore not mutually orthogonal. As the radial
functions in Eq. (3.48) contain the factor ", quite diffuse s, p, and d functions are
included in the n = 2, 3, and 4 sets. For n < 4 there are 35 deformation functions
on each atom, compared with 25 valence-shell density functions with [ < 4 in the
multipole expansion of Eq. (3.35).

The Hirshfeld functions give an excellent fit to the density, as iltustrated for
tetrafluoroterephthalonitrile in chapter 5 (see Fig. 5.12). But, because they are less
localized than the spherical harmonic functions, net atomic charges are less well
defined. A comparison of the two formalisms has been made in the refinement of
pyridinium dicyanomethylide (Baert et al. 1982). While both models fit the data
equally well, the Hirshfeld model leads to a much larger value of the molecular
dipole moment obtained by summation over the atomic functions using the
equations described in chapter 7. The multipole results appear in better agreement
with other experimental and theoretical values, which suggests that the latter are
preferable when electrostatic properties are to be evaluated directly from the
least-squares results. When the evaluation is based on the density predicted by
the model, both formalisms should perform well.



4

Least-Squares Methods and Their
Use in Charge Density Analysis

4.1 Least-Squares Equations
4.1.1 Background

The number of reflection intensities measured in a crystallographic experiment is
large, and commonly exceeds the number of parameters to be determined. It was
first realized by Hughes (1941) that such an overdetermination is ideally suited
for the application of the least-squares methods of Gauss (see, e.g., Whittaker and
Robinson 1967), in which an error function S, defined as the sum of the squares
of discrepancies between observation and calculation, is minimized by adjustment
of the parameters of the observational equations. As least-squares methods are
computationally convenient, they have largely replaced Fourier techniques in
crystal structure refinement.

In addition to the positional and thermal parameters of the atoms, least-
squares procedures are used to determine the scale of the data, and parameters
such as mosaic spread or particle size, which influence the intensities through mul-
tiple-beam effects (Becker and Coppens 1974a, b, 1975). It is not an exaggeration to
say that modern crystallography is, to a large extent, made possible by the use of
least-squares methods. Similarly, least-squares techniques play a central role in the
charge density analysis with the scattering formalisms described in the previous
chapter.

4.1.2 General Formalisms for Linear Least-Squares

The following description follows closely the treatment given by Hamilton (1964).
Suppose we have n experimental observations

SosSos S (4.1)
72
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each of which is known to depend linearly on a set of m parameters

Xisevns X (4.2)
with m < n.
If each observation f; is subject to a random error g, the observational
equations may be written as

fi=auxy+ax, + -+ ay,Xx, + &

Sy =ay1xy +a%; -+ dyu X + 8y

fn = Ap1 Xy + Ay2X2 + ot Ay X €y (433)

Or, in matrix notation
Fn‘l = An,mxm.l + En,l (43b)
The matrix A is called the design matrix. Its elements are the derivatives

ofi/0x; = ay;. R

Given the n observations, our aim is to obtain the best estimates X of the m
unknown parameters to be determined. Gauss proposed the minimization of the
sum of the squares of the discrepancies, defining the error function S, which, after
assignment of a weight w; to each of the observations, is given by

n n

S= T wilfi=f)? = ¥ wi? (4.4)
i=1 i=
where the f; are the values for the observations based on the estimates X.
Suppose the observations are correlated with the correlation coefficient y;;
describing the correlation between the ith and jth observations. The variances and
covariances of the observations will then be given by the variance—covariance
matrix M, with elements o,0;y;;, where o, is the standard deviation of the ith
observation. The error function S for a set of correlated observations is defined as

S=VIM;'V (4.5)
where V is a column matrix, with elements f; — fi, or
V=F-F=F-AX (4.6)
Thus, . R
S=VM;'V=(F — AX)"M; '(F — AX)
= F™; 'F + XTA™M; 'AX — FTM; 'AX — XTA™M; 'F
=F™ 'F + XTATM; 'AX — 2F"M; 'AX (4.7)
The best estimate of the unknowns is obtained when dS/0x; = 0 for each of

the m unknowns. In matrix notation, introducing the differential operator J, these
conditions are written as

S =8(V™™M;'V) =0 (4.8a)
or, substituting Eq. (4.7),

S(VM; V) = 2(3X)T(ATM; 'AX — ATM; 'F) = 0 (4.8b)
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The m normal equations are defined by the solutions
(ATM;'A)X = ATM[ 'F (4.9)
or, substituting B = ATM[ 'A
BX = ATM['F (4.10)

where B is known as the matrix of the normal equations. In the case that the
observations are not correlated, M; ' is the diagonal weight matrix, and the
elements of B are equal to

O

i=1 6xJ axk
According to Eq. (4.10), the best estimates of the unknowns X are given by
X =B 'ATM;'F (4.11)

The vector F and the corresponding variance-covariance matrix M, are the
only parts of this equation that depend on the measurements; the other quantities
are derived from the observational equations.

4.1.3 Explicit Expressions for Structure Factor
Least-Squares

In the least-squares treatment of diffraction intensity data, the experimental
quantities f; are usually defined as either the square of the structure factor, F2, or
the structure factor, F. The discrepancy between observation and calculation is
then
= |F(obs) — k{F(calc)|| (4.12)
or
A = |F*(obs) — k?|F(calc))?| (4.13)

where the scale factor k is needed to bring experiment and observation to a
common scale.

Unlike the treatment described in the previous section, the structure factors
are not linear functions of the unknowns x;, as was the case for the observations
described by expression (4.3). The equations of the preceding section can only be
retained by the approximation that all the second and higher derivatives are zero.
The price paid for this assumption is that the equations are no longer exact, so
that a single calculation no longer leads to the minimum of the error function. If
the deviations from linearity are not pronounced, the minimum may still be
reached, but a number of iterations may be necessary to achieve convergence.

To linearize the equations, the slope of the error function S,S; may be
developed as a Taylor series in the current values of the unknowns x;. For the
Jjth unknown, we obtain

08X 028X
;= 5j0%0) + £ 21 oy 4 w7 TS
k

0X, 0X,+ ... 4.14
0%, dx; 0x, Ok @19
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with k, p = 1,...,m for m unknowns. The subscript in X, indicates that current
values of the unknowns are used. The first term is the slope of the error function
along the parameter axis x; at X,, and is obtained from Eq. (4.4) as
a8 ! CA,;
Si(Xg) = — =2 Z W, (4.152)
Cx; Ox;
Linearization is accomplished by truncating the series of Eq. (4.14) after the
first derivative, or
P 08i(Xo)
S; = Si(Xo) + 3. éhf"

k Xk

5%, (4.16)

We will treat the case that the observations are chosen to be the structure
factors F. The expression relevant in this case, Eq. (4.12), gives

aAi___ _6|kw '( obs lk calcl)

axi ax} I obs ‘k alc“

On substitution into Eq. (4.152a), one obtains

" kF,
SiXe) = ~2 Y. wi(F,, — IKF, |>‘—3'—~' (4.15b)
i=1 X;
which gives, for Eq. (4.16),
n akFlc
= 2 Y wik, — kE ) Il
i=1 j
n O\kF; OlkF; . n @Zk
+ZZ{Z (' ”')(' L ) Sw IkF; I(Sxk} @.17)
r U= Ox; 0x, = Xy 0X;

The last summation in Eq. (4.17) which contains second derivatives is again
omitted. This is consistent with the original approximation of setting all second
derivatives equal to zero, but implies that even the first-order term in the Taylor
expansion of Eq. (4.15a) is not fully taken into account. The resulting m normal
equations S; =0 (j=1,...,m) are

3 O|kF; | \( Ok .| o @lkF |
g {[igl Wi( 0x; )(_a_g”ﬂ 5x"} = ig.l wi{F; , — |kF; |} (4.18)

This result is equivalent to the linear least-squares normal equations, Eq.
(4.10), with a diagonal variance—covariance matrix M,

BX = ATM; 'F (4.10)
with the elements of A(nm) given by A;; = JkF, .|/0x;, those of F(nl) by F, =
w;|F; , — |kF; .||, and those of the symmetrlc matrix B(nn) by

- OlkF; J)(alkﬁ c')
B, = wi| ——— :
i igl < axj axk

The calculation of the matrices A and B, the inversion of B, and the matrix
multiplications, are the major steps in a least-squares iteration.
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As is evident from Eq. (4.18), the elements of the vector X in Eq. (4.10) are
defined as X; = dx;. The replacement of x; by dx; shows that the solution of Eq.
(4.11) now leads to the shifts in the unknowns, rather than directly to the best
values of the unknowns.

Since the truncation of Eq. (4.14) is an approximation, the shifts may be
under- or overestimated. When the shifts are added to the original parameter
values, that is, X, = X, + 0X, the elements of the design matrix A, which depend
on X, change. Many iterations may be needed before convergence can be reached,
if it 1s indeed reachable. Strategies for coping with “difficult” refinements have
been discussed by Watkin (1994).

The agreement between observations and calculations is the basis for judging
the success of the refinement as described in the following section.

4.1.4 Variances and Covariances of the Least-Squares
Parameter Estimates

The matrix M,, describing the variances and covariances in the best values of the
unknowns X, is written as (Hamilton 1964)

M, = &{(X — X)X - X"} (4.19)

in which the superscript 0 labels the true values, and the symbol ¢ indicates an
estimate. Substitution of Eq. (4.19) into Eq. (4.11), X = B"'A"M 'F, gives

M, = ¢{B"'A"M; '(F — F°)F — F°)"M; 'AB~'}
= B 'A™M; '¢{(F — FO)(F — F%)T}M; 'AB~! (4.20)

The estimate ¢{F — F°)(F — F°)7} is the variance—covariance matrix of the
observations M, defined earlier. Thus,

M, = B 'ATM;'M,M; 'AB"! = B 'ATM; 'AB"! (4.21a)
As B is defined as B = A"M[ 'A, we obtain
M, =B! (4.21b)

In other words, the variance—covariance matrix of the unknowns is the inverse
of the matrix B. As described in the preceding section, the elements of B are the
sums over the products of the derivatives of the observational equations with
respect to the unknowns. Expression (4.21b) shows what we might have anticipated
intuitively. As the elements of B™* will tend to be inversely proportional to those
of B, an element of B~! mainly related to small derivatives will be large.
Consequently, when the observations are not sensitive to an unknown parameter,
the errors in the unknown parameter are large, and vice versa.

It is quite common that only the relative values of the variances and
covariances in the observations can be estimated. We may then write

M, = 02N, (4.22)

where ¢® is a scale factor required to reduce M, to the matrix N, of the
absolute-scale variances and covariances. The scale factor o2 is described as the



Least-Squares Methods in Charge Density Analysis 77

variance of an observation of unit weight, that is, when an element of N equals 1,
o2 is the variance of the corresponding variable.

We obtain

1 1
M:;!l=_-N:!'=—P 423
S 0_2 S a2 ! ( )

and ;

A'P A

B=AT™;'A="-—/ (4.24)

o

It follows that the variances—covariances of the unknowns are given by
M, =B ! =¢*ATP;4)"! 4.25)

where P, is commonly taken as a diagonal matrix with the weights of the
observations as elements. We note that with area detectors, groups of reflections
are measured on a single frame, so correlations between observations may no
longer be negligible.

The best estimate 62 of 2 is related to the magnitude of the discrepancies V.
The value of 62 is an average of the weighted squares of the discrepancies, taking
into account that the fit will progressively improve as the number of unknowns
m approaches the number of observations n. When n = m the solution of the
observational equations is exact, but the variances and covariances are indetermin-
ate. The best estimate ¢ is obtained from

vip,. v
42 = ! (4.26)
n—m
or, in the case of a diagonal matrix P/,
Y wA?
62=""1 (4.27)

n—m

When realistic weights are assigned to the observations, and the model is
adequate, then w; ~ A; 2. If these conditions are fulfilled, the goodness of fit 6* will
be close to unity.

Substitution of Eq. (4.27) into (4.25) gives the variance—covariance matrix of
the unknowns as

Y wA?
M, =" (ATP,A)"! (4.28)
m

X

The element M;; of M, is often written as o0,0;y;;. Thus, the correlation
coefficient y;; may be obtained from

M.
V.. = Ty (4.29)

rij —

Vv M M;;
Correlation can be illustrated in a two-dimensional section of m-dimensional
parameter space, as shown in Fig. 4.1. The two parameters, x, and x,, are positively
correlated; if x, is too large, the error in x, is likely to be in the same direction.
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x>
1

- |

FIG. 4.1 Ellipse of the standard deviation for two correlated parameters, with best estimates
X, and x,. The standard deviations o, and ¢, are the horizontal and vertical dimensions
of the ellipsoid at the point X, X,. The projections of the ellipsoid on the parameter axes
are referred to as the conditional standard deviations.

4.1.4.1 Propagation of Errors

Suppose we want to calculate p derived quantities u;, dependent on the m
unknowns x;, determined by a least-squares procedure. If D is the p x m matrix
of derivatives, defined by

ou;

o= 4.30
4 axj ( )

the variances and covariances of the elements of U are obtained as
M, = DM, D’ (4.31)

A simple example is a bond length defined as x; — x,. The 1 x 2 matrix D
has two elements equal to 1 and —1, and the errors in the difference of the
coordinates are given by

oi(x; — X;3) = a2(x;) + 0%(x;) — 20(x,)0(x;)7,2

In the special case that the two atoms are related by a center of symmetry, the
correlation coefficient will be — 1, and we obtain

02(x1 ~ X3) = {U(X1) + U(xz)}2

Thus, the error in the difference of the unknowns is larger than it would be
without correlation, unlike the example given in Fig. 4.1 for which the error in
the sum of the unknowns is increased.

Expression (4.31) is widely applied to calculate the error in properties derived
from the least-squares variables. We will use it in chapter 7 for the calculation of
the standard deviations of the electrostatic moments derived from the parameters
of the multipole formalism.
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4.1.5 Uncorrelated Linear Combinations of Variables

When the parameters are strongly correlated, it is still possible to define a set of
mutually uncorrelated combinations of the parameters. This can be shown as
follows. If T represents the matrix of the eigenvectors of the variance-covariance
matrix M,, then M, is diagonalized by the transformation

A=TM.T" (4.32)
We may define a set of linear combinations of the unknowns as
X =TX (4.33)

Because of Eq. (4.31), A is the variance—covariance matrix of the set of
unknowns X', which we will refer to as the eigenparameter. The eigenparameters
X' are, by the definition of the variance—covariance matrix, not correlated.

Some of the linear combinations will be well defined and others poorly defined.
The latter may be eliminated in a filtering procedure, referred to in the literature
under the names characteristic value filtering, eigenvalue filtering, and principal
component analysis. If the parameter set is not homogeneous, but includes different
types, relative scaling is important. Watkin (1994) recommends that the unit be
scaled such that similar shifts in all parameters lead to similar changes in the error
function S.

Diamond (1966) has applied a filtering procedure in the refinement of protein
structures, in which poorly determined linear combinations are not varied. In
charge density analysis, the principal component analysis has been tested in a
refinement of theoretical structure factors on diborane, B,H,, with a formalism
including both one-center and two-center overlap terms (Jones et al. 1972). Not
unexpectedly, it was found that the sum of the populations of the 2s and spherically
averaged 2p shells on the boron atoms constitutes a well-determined eigenparameter,
while the difference is very poorly determined. Correlation between one- and
two-center terms was also evident in the analysis.

The value of Eq. (4.32) is that it shows exactly which features of the structure
are well determined and which are poorly determined in the fitting procedure. For
the two-dimensional example of Fig. 4.1, the eigenparameters correspond to the
principal axes of the variance—covariance ellipsoid in the figure. In general, they
define the principal axes of the hyper-ellipsoid in m-dimensional parameter space
which represents the variance-covariance matrix.

4.2 The Least-Squares Parameters in Charge Density Analysis
4.2.1 The Parameters in a Charge Density Refinement

The nature of the charge density parameters to be added to those of the structure
refinement follows from the charge density formalisms discussed in chapter 3. For
the atom-centered multipole formalism as defined in Eq. (3.35), they are the valence
shell populations, P, ,,, and the populations P, ,,, of the muitipolar density
functions on each of the atoms, and the x expansion—contraction parameters for
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TABLE 4.1 Summary of Least-Squares Variables

Conventional Variables Charge Density Variables
Scale factor k Valence-shell parameters
Positional parameters x;, y;, z, Population parameters F, ,,,
Thermal parameters Expansion—contraction parameters x;
harmonic fi,, f,;,
higher-order quasimoments ¢#*- Deformation parameters
or Population parameters F, ,,
higher-order cumulants &/*- Expansion—contraction parameters x|

Extinction parameters
1sotropic or anisotropic
Occupancy parameters

both the valence shell and the deformation functions of the atoms. These are
summarized in Table 4.1.

4.2.2 Parameter Restrictions Imposed by Site and
Local Symmetry and Chemical Equivalence

The number of multipole parameters is reduced by the requirements of symmetry.
As discussed in chapter 3, the only allowed multipolar functions are those having
the symmetry of the site, which are invariant under the local symmetry operations.
For example, only ! =even multipoles can have nonzero populations on a
centrosymmetric site, while for sites with axial symmetry the dipoles must be
oriented along the symmetry axis. For a highly symmetric site having 6 mm
symmetry, the lowest allowed [ # 0 is dgg . ; all lower multipoles being forbidden
by the symmetry. The index-picking rules listed in appendix D give the information
required for selection of the allowed parameters.

It is often found that multipoles which violate local symmetry are not
significantly populated. If this is the case, the number of variables can be reduced
significantly by application of local-symmetry restrictions. Examples are the mirror
symmetry of aromatic rings, and the symmetry at the metal site of many transition
metal complexes.

Many molecules contain chemically equivalent atoms, which, though in a
different crystal environment, have, to a good approximation, the same electron
distribution. Such atoms may be linked, provided equivalent local coordinate
systems are used in defining the multipoles. In particular, for the weakly scattering
hydrogen atoms, abundant in most organic molecules, this procedure can lead to
more precisely determined population parameters.

We demonstrate the use of local coordinate systems with the molecule of
tetrasulfur tetranitride, S,N,, (Fig. 4.2) as an example. It occupies a general
position in its crystal’s space group, with one molecule in the asymmetric unit.
Thus, there are eight crystallographically independent atoms. If multipoles up to
and including the hexadecapoles are included, the number of population parameters
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FiG. 4.2 Molecular structure of tetrasulfur tetranitride with 509, thermal probability
ellipsoids. Source: DeLucta (1977).

is 81 +3+5+7+9) =200, plus 16 x ,and «' parameters, for a total of 216
charge density variables. '

The sulfur atoms are located in molecular but not crystallographic symmetry
planes, and the nitrogen atoms are located on molecular two-fold axes, passing
through N1 and N2, and through N3 and N4. The equivalent local coordinate
systems are shown in Fig. 4.3. The multipoles allowed in the specified coordinate
systems are listed in Table 4.2. The introduction of local symmetry and chemical
equivalence of the four S and four N atoms reduced the total number of
spherical-harmonic density functions to 15 for S, and 13 for N. The restrictions
result in 28 population parameters, plus two each x and k' values. The dramatic
reduction from 216 to 32 charge density parameters greatly improves the stability
of the charge density refinement of this molecule.

4.2.3 The Scale Factor

Since reflection intensities are commonly measured on a relative rather than an
absolute scale, a scale factor is required to bring observations and calculations on

y z down y
5 / S, N
N/ *X\ N x down L - \
2 4

N, z x down N4
y/ \ [N 4N
y X X zup
Sy—> - 83 S4 S2
zup
\ /Ly 2 /
f" N ‘ d\
N 1 x down
3 x down N N,
3y —~ %57,
z down

FIG. 4.3 Local-symmetry-adapted coordinate systems for S (left) and N (right) in the S,N,
molecule. Source: Stevens (1980).



82 X-ray Charge Densities and Chemical Bonding

TABLE 4.2 Local-Symmetry-Allowed
Multipole Population Parameters in
SN,

(a) Nitrogen (two-fold axis along z axis)

I = 0,1 2 3 4
Foo P Py Foo

P Py Py Pazs

Py, - Py, - Py, -

Paas

Pya-

l= 0,1 2 3 4
Poo Py Py FPio
Py Py Py LA
Py Py - Py Pyzs
P33+ P43+
Pias

a common scale. As introduced in Eq. (4.12), the scale factor k is defined by
Fobs(H) = kIFcah:(H)l (434)

Since the scale factor is considered an unknown in the least-squares procedure,
its estimate is dependent on the adequacy of the scattering model. Other
parameters that correlate with k may be similarly affected. In particular, the
temperature factors are positively correlated with k, the correlation being more
pronounced the smaller the sin 6/4 range of the data set, as for a small range the
scale factor k and the temperature factor exp (— B sin 6%/4%) affect the structure
factors in identical ways.

As discussed in the following chapter, difference electron density maps,
representing Ap = p.u — Pearc» are based on the Fourier transform of the complex
difference structure factors AF, defined as

AF = K, (H)/k — F,(H) (4.35)

The difference density is strongly dependent on k, especially where the electron
density p is large, as it is near the nuclear positions. When k& is overestimated, the
difference density will be underestimated, and pronounced negative holes will
occur in the nuclear regions.

The scale factor can be measured experimentally by a number of techniques,
using either single crystal or powder samples (Stevens and Coppens 1975).
Measurement for a number of crystals, including orthorhombic sulfur (Sg) and
a-deutero-glycylglycine, and comparison with least-squares values, indicate that
scale factors from spherical-atom refinements are subject to a positive bias of
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typically several percent. The magnitude of the bias depends on the composition
of the material and on the high-order cut-off of the diffraction data. It is much
reduced by limiting the refinement to the high-order data; even a cut-off of
sin §/4 > 0.65 A~! appears adequate in the cases studied. Improved scattering
models, as discussed in chapter 3, are an effective means of reducing scale factor
bias, though accurate experimental k values remain preferable.

That the positive bias in the scale factors correlates with an increase in thermal
parameters is evident from comparison of X-ray and neutron results (Coppens
1968). The apparent increase in thermal parameters of some of the atoms may be
interpreted as the response of the spherical-atom model to the existence of overlap
density. Because of the positive correlation between the temperature parameters
and k, this increase is accompanied by a positive bias in k.

4.3 Physical Constraints of the Electron Density
4.3.1 The Electroneutrality Constraint

Since a crystal is neutral, the total electron population must equal the sum of the
nuclear charges of the constituent atoms, or

Z (Pt vatence + Fi,00) = Z Z; (4.36)

where Z, is the nuclear charge of the ith atom.
Equivalently, starting from a neutral crystal,

Z_ Z 4;;0P; =0 (4.37a)

where 6F;; are the calculated shifts for population parameter j on atom i, and g;; is
the charge integrated over the corresponding density function. With the normaliza-
tions discussed in chapter 3, g;; will be either one for I = 0 or zero for | # 0. Thus,
Eq. (4.37a) can be rewritten as

Z (5P:, valence T 5P, 00) =0 (4.37b)

Several ways to introduce the constraint into the refinement are discussed in
the following sections.

4.3.1.1 The Hamilton Method

In a convenient method, due to Hamilton (1964), the Lagrangian multipliers
representing the constraint are algebraically eliminated from the least-squares
expressions. The linear constraints are defined as

Qpn X1 = Zy, (4.38)

where values of X are the parameter shifts dx;, Q,,, is a coefficient matrix, and the
column vector Z,, contains the values to which the linear combinations are

constrained. Hamilton has shown that the best constrained estimates X are
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obtained from the shifts without the constraints, using the equation

X" =X"+(Z" - X"Q")QB Q7)) QB! (4.39)
In the case of the electroneutrality constraint, Z in Eq. (4.38) equals 0, so that
X" =X" - X"Q"(QB~'Q")"'QB"! (4.40)

where Q is a row vector with a 1 for every element representing the population
of a normalized monopole, and 0 otherwise.

The variance—covariance matrix with the constraint is modified in a similar
manner, according to the expression

M,=B"'-B'Q"(QB"'Q")"'QB™’ (4.41)

Equations (4.40) and (4.41) are easily implemented in an existing least-squares
program and give both the constrained and the unconstrained results in a single
refinement cycle. However, the method fails if the unconstrained refinement
corresponds to a singular matrix, as would be the case, for example, if all
population parameters, including those of the core functions, were to be refined
in addition to the scale factor k.

4.3.1.2 The Use of Independent Variables

The introduction of dependent variables is an often-used approach in handling
constraints. It is, for example, quite common in crystals that one site is occupied
by two different atoms, or one atom is distributed over two sites. In this case, a
single population parameter P} may be introduced, such that P, = P{, and
P,=1-P..

More generally, the shifts in the new set of independent variables Y are related
to the shifts in the dependent variables X by (Raymond 1972)

5X = J5Y  with J; = dx,/dy; (4.42)

The matrix J represents the constraints. If there are b constraints, J will be
anm x (m — b) matrix, where m is the number of variables before the introduction
of the constraint. The derivatives of the observations with respect to the
independent parameters Y are obtained from

JoF OF
—=J7 (4.43)
oY oX

For example, in a refinement of three population parameters, satisfying the
constraint Y P, = n., P, and P, may be chosen as the set Y. Equation (4.42) then
becomes

5P, 10

5P,
sl ={ 0 1 (4.44)
5P, —1 -1

The independent-variable method leads to a reduction in the size of the matrix
B from m x m to (m — b) x (m — b).
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4.3.1.3 The F(000) Constraint

Electroneutrality may also be implemented by imposing the requirement that
F(000) equal the number of electrons in the unit cell. The equation F(000) = n,
can be treated as an observation, with a weight sufficient to keep the crystal
practically neutral, but sufficiently small such as not to dominate the least-squares
treatment. This slack constraint (Pawley 1972) has been applied in electron density
analysis by Hirshfeld (1977).

43.1.4 The Use of a Core Scale Factor

When the core populations are not varied, a somewhat different approach can be
used, in which the scale factor k multiplies only the functions with fixed electron
population, rather than all the electron functions (Stewart 1976). The observational
equations are of the form

Feoe(H) = kFcore + Fiatence = Z {kFi,core + Z Pl{jﬁj, valence} exp 2riH 1) T;
(4.45)

The valence-shell populations are scaled after completion of the refinement
by use of £; = P;/k. If the procedure is successful, the sum of P;; should be close
to the total number of valence electrons. The difference between these two
quantities is used as a test of the adequacy of the valence density functions.

4.3.2 The Hellmann-Feynman Constraint

The electrostatic Hellmann-Feynman theorem states that for an exact electron
wave function, and also of the Hartree—Fock wave function, the total quantum-
mechanical force on an atomic nucleus is the same as that exerted classically by
the electron density and the other nuclei in the system (Feynman 1939, Levine
1983). The theorem thus implies that the forces on the nuclei are fully determined
once the charge distribution is known. As the forces on the nuclei must vanish for
a nuclear configuration which is in equilibrium, a constraint may be introduced
in the X-ray refinement procedure to ensure that the Hellmann-Feynman force
balance is obeyed (Schwarzenbach and Lewis 1982).

In a bond A—B between first-row atoms, the internuclear repulsion is
electrostatically balanced by the buildup of charge density in the bond, that is due
to either o- or m-valence electrons (Hirshfeld and Rzotkiewicz 1974). But this
charge migration is accompanied by a polarization of the g-valence electrons
within the 2s radial nodal surface, and, through exchange interaction between the
o electrons and the core, by a very sharp polarization of the core electron density
in the regions very close to the nuclei. Such deformations correspond to density
functions with large values of the orbital exponent coefficient {. Functions of this
type are normally not included in the X-ray model, because limited resolution and
thermal smearing hamper determination of their parameters. Since they are located
very close to the nuclei, the occupancy of the polarization functions correlates
strongly with the atomic coordinates. The Hellmann-Feynman force-balance
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constraint indirectly provides the missing information. Enforcing the constraint
will adjust the parameters such as to maintain force balance.

The Hellmann-Feynman constraint has been applied successfully to the
exocyclic fluorine, carbon, and nitrogen atoms in tetrafluoroterephthalonitrile
(1,4-dicyano-2,3,5,6-tetrafluorobenzene). Charge balance is achieved without deterio-
ration of the least-squares agreement factors, though the resulting changes in the
density maps are very small (Hirshfeld 1984) (see chapter 5).

We note that the constraint applies to the static density. Its application
therefore requires adequate deconvolution of thermal motion and electron density
effects.

4.4 Joint Refinement of X-ray and Neutron Data
4.4.1 The Use of Complementary Information

The use of complementary data from different techniques can be a powerful tool
to reduce parameter correlation in least-squares methods and to obtain the best
estimates compatible with all available physical information.

The joint use of X-ray and neutron diffraction data is particularly expedient.
Firstly, the interaction between the magnetic moments of neutrons and electrons
is the basis for polarized-neutron diffraction, from which the unpaired spin density
in a system can be derived. The diffraction of spin-polarized neutrons is an
important technique, beyond the scope of this volume. Secondly, the interaction
between neutrons and the atomic nuclei, which is the basis for structure determina-
tion by neutron diffraction, leads directly to information on the positions and
mean-square vibrations of the nuclei.

Neutron diffraction is especially important for the location of hydrogen atoms,
as the pronounced effect of bonding on the hydrogen-atom charge density leads
to a systematic bias in the X-ray positions, as discussed in chapter 3. If the charge
density in a hydrogen-containing molecule is to be studied, independent informa-
tion on positions and thermal vibrations of the H atoms is invaluable.

The combination of data from different techniques raises several issues, as the
experimental conditions may not have been identical, and the data no longer form
a homogeneous set of observations. Several of these issues are discussed below.

4.4.2 Differences in Temperature Parameters

Early studies, which did not include many high-order reflections, revealed
systematic differences between spherical-atom X-ray- and neutron-temperature
factors (Coppens 1968). Though the spherical-atom approximation of the X-ray
treatment is an important contributor to such discrepancies, differences in
data-collection temperature (for studies at nonambient temperatures) and systematic
errors due to other effects cannot be ignored. For instance, thermal diffuse
scattering (TDS) is different for neutrons and X-rays. As the effect of TDS on the
Bragg intensities can be mimicked by adjustment of the thermal parameters,
systematic differences may occur. Furthermore, since neutron samples must be
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larger, because the beams are weaker, extinction and multiple diffraction tend to
be more pronounced. On the other hand, absorption of neutrons within the crystal
is generally lower, notwithstanding the larger specimen sizes.

Such effects will contribute to the discrepancies between X-ray (X) and
neutron (N) temperature parameters, which have been found to exist even
room-temperature studies, for which temperature ambiguities are minimal (Craven
and McMullan 1979). The effect of TDS can be especially pronounced in
room-temperature studies of often soft molecular crystals, and, if not recognized,
can lead to an artificial enhancement of features in difference maps based on a
combination of the two techniques (Scheringer et al. 1978) (see chapter 5).

To account for temperature factor differences, a temperature scale factor k;
multiplying the neutron temperature parameters may be introduced, as defined

by the expression (Coppens et al. 1981)

all
atoms

Freutron(H) = Z {bi exp (2niH-r;) exp (‘2”2"7‘ ) Z Uijk.Nhjhka;'kaI:k)}
7K

(4.46)

This formulation is appropriate in the “high-temperature limit” at which
temperature factors are proportional to absolute temperature (chapter 2). For
most molecular crystals, this limit is reached even at liquid-nitrogen temperature.

Other alternatives exist, such as,

all
atoms

Fneutron(H) = Z {bl exXp (27riH'ri) cxp ': —2n? Z Z (Uijk,N + AUJk) ’ hjhka}ka:]}
J ok

(4.47)

where AU, common to all atoms, may be chosen either to follow the symmetry
transformation of U;; for symmetry-equivalent atoms, or to be similarly oriented
for all atoms in the unit cell. The latter choice would correct for systematic errors
due to incorrect allowance for absorption or anisotropic extinction in either of
the two data sets.

Blessing (1995) has tested a number of alternative models for describing the
discrepancy between X-ray and neutron thermal vibration parameters, using X-ray
and neutron Uj; values from the IUCr oxalic acid project (section 12.1.3, Coppens
1984). The expressions Uy x = Uy v+ AU {ie, Eq. (4.47)] and Uy x=k; Uy v+
AU;; [a combination of Egs. (4.46) and (4.47)] were found to be the most effective
in providing reliable corrections. Blessing points out that the corrections calculated
for the nonhydrogen atoms of a crystal can be used for adjusting neutron Uj;’s
of the hydrogen atoms, to provide a set of fixed hydrogen thermal parameters for
use in an X-ray analysis of the charge density.

4.4.3 Relative Weighting of the X-ray and Neutron
Data
Because the error function S= ) w,A? is a weighted sum of the squared
i=1
discrepancies between observed and calculated values, the relative weighting of
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the two data sets affects their relative importance in the minimalization procedure.
Since the weights should be based on the experimental uncertainties, they may be
derived from the agreement between symmetry-related reflections in each of the
data sets, and, counting statistical considerations, by using expressions described
in the literature (McCandlish et al. 1975).

4.4.4 Estimate of the Goodness of Fit

The goodness of fit achieved in a refinement is defined by Eq. (4.27). Its evaluation
for each of the subsets of data requires partitioning the unknowns between the
two sets. Some, such as the scale factors, will be dependent on one subset only;
other, such as heavy-atom positional parameters, will be determined by both sets
of data. Information on the relative dependency is contained in the matrix B, the
elements of which are the sums of the contributions from the X-ray and neutron

observations. We may write
B =B, + B, (4.48)

For each unknown u; the fractional dependence ¢ can be based on the relative
contributions of the two subsets to the diagonal elements of B, according to

(Coppens et al. 1981)
OkE\?
w
; ( Ou; )

Px,j = 2 2
OkE JkE
(%) 205
X aul N auJ

2

Zw<akEc>

N aul
Pni= TTTRKEN? OKE,\?
() +3(5)

X auj N au]

(4.49)

where E is either F or F? depending on the function minimized, and ¢y, ; + @y ; = L.
In case a diagonal approximation to B is used in the least-squares refinement, @y
and ¢y, as defined by Eq. (4.40), are inversely proportional to the squared standard
deviations of the separate X-ray and neutron analyses. Some parameters will be
entirely dependent on one of the two sets, in which case ¢ = 1; and for the

other set, ¢ = 0.
For the case that E = F(H), the relative weight of the two data sets in the

analysis can be approximated by
Wy = ny{(why f)/{ny {Owh; £)75 + nyCwlh;bi) ) (4.50a)
for the positional parameters u;, and
Wy = ny{whihy [/ {ng (whihy £)2D + ny (wlhilb)?>} (4.50b)

for the vibrational parameters Uj. The expressions for W} are analogous. In Eq.
(4.50), ny and n, represent the number of X-ray and neutron observations,
respectively, and f and b are the thermally attenuated X-ray and neutron scattering
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TABLE 4.3 Relative Dependence (¢, 100) of Parameters in the Joint X—N Refinement
on the X-ray Data On 2-Oxalic Acid Dihydrate (100 K). The Neutron Dependence
oy is Given by | — @y,.

X y 2 Uiy Us, Us; Uiz Uys Uss
C(1) 83 80 80 81 75 79 83 81 83
o(1) 91 90 89 89 86 88 90 89 89
0Q2) 91 90 90 90 86 87 90 89 89
0Q3) 91 88 90 90 87 88 90 90 89
H(1) 2 2 2 1 1 1 1 1 1
H(2) 4 4 3 2 3 2 2 3 2
H(@3) 4 4 4 2 2 2 2 2 2

factors, respectively. Expressions (4.50a) and (4.50b) illustrate the effect of the
number of reflections and their relative weighting, and the decreasing relative
importance of the X-ray data in the high-angle region, where the neutron scattering
factors dominate.

Finally, we obtain, for the goodness of fit of the X-ray data, in analogy to Eq.
4.27),

Z Wi x Aiz.X
6= (4.51)
ny — Z Px.j
i=1

and an analogous expression for the neutron data set.
4.44.1 An example

The joint refinement of low-temperature (=100 K) X-ray and neutron data on
oxalic acid dihydrate (Coppens et al. 1981) is an example of the combined use of
different experimental techniques. The temperature scale factor according to Eq.
(4.46) was found to be 0.892, indicating a lower temperature of the neutron
experiment, which was performed on a sample in a cryostat, rather than in a cold
gas stream. The main improvements compared with the X-ray-only refinement are
in the hydrogen positional and thermal parameters, which are not properly
reproduced in the X-ray-only refinement, even when the multipole model is used.
The ¢, values for the positional and thermal parameters are listed in Table 4.3.
As expected, the hydrogen parameters are dominated by the neutron observations.



5

Fourier Methods and Maximum
Entropy Enhancement

Image formation in diffraction is no different from image formation in other
branches of optics, and it obeys the same mathematical equations. However, the
nonexistence of lenses for X-ray beams makes it necessary to use computational
methods to achieve the Fourier transform of the diffraction pattern into the image.
The phase information required for this process is, in general, not available from
the diffraction experiment, even though progress has been made in deriving phases
from multiple-beam eflects. This is the phase problem, the paramount issue in
crystal structure analysis, which also affects charge density analysis of noncentro-
symmetric structures. For centrosymmetric space groups, the independent-atom
model is a sufficiently close approximation to allow calculation of the signs for
all but a few very weak reflections.

Images of the charge density are indispensable for qualitative understanding
of chemical bonding, and play a central role in charge density analysis. In this
chapter, we will discuss methods for imaging the experimental charge density, and
define the functions used in the imaging procedure.

5.1 General Expressions
5.1.1 The Total Density
According to Eq. (1.22), the structure factor F(H) is the Fourier transform of the

electron density p(r) in the crystallographic unit cell. The electron density p(r) is
then obtained by the inverse Fourier transformation, or

p(r) = J F(H) exp (—2niH 1) dH (5.1)

90
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in which F(H) are the (complex) structure factors corrected for the anomalous

scattering discussed in chapter 1.
Since F(H) is defined at the discrete set of reciprocal lattice points H, the
integral in Eq. (5.1) can be replaced by a summation:

p(r) = V* Y F(H)exp (—2niH-r) (5.2)
A

where V*, the volume associated with a reciprocal lattice point, equals 1/V, V being
the unit-cell volume. Thus,

o(r) = 1 Y F(H)exp (—2niH-r) (5.3)
VR

The electron density is a real function. The right-hand side of Eq. (5.3) must
therefore be real also. This can be shown as follows. Writing

F(H) = |F(H)| exp ip(H) = A(H) + iB(H) (5.4)

where @(H) is the phase of the structure factor (see Fig. 5.9). Combining the
contributions to the summation of F(H) and F(—H), using A(H) = A(—H) and

B(H) = — B(—H), gives, after cancellation of terms,
p(r) = %/UZZ {A(H) cos (2nHr) + B(H) sin 27H 1)} (5.5)

or, with
AH) = [F(H)|cos ¢ and  B(H) = |F(H)| sin ¢ (5.6)
p(r) = ;2712/2 [IF(H)| cos {2nH r — o(H)}] (5.7

In other words, each structure factor contributes a plane wave to the
total density with wavevector H and phase ¢. As noted in the introductory
paragraphs to this chapter, formation of the image, which is the density, requires
knowledge of the phases of the structure factors. Once an approximation to
the scattering density is known, ¢(H) may be calculated on the basis of
this approximation, and an admittedly imperfect image of the structure can be
obtained. At the same time, anomalous scattering can be corrected for, which can
be done by subtracting the calculated contributions AA427malevs and A Banpmalous
from 4 and B, respectively, using the anomalous scattering factors f' and f”
discussed in section 1.3.

The period of the plane wave with amplitude F(H), in the direction of the
wavevector H, equals 1/H. The period is therefore shorter for higher-order
reflections, which thus add resolution to the image. As more higher-order
reflections are included in the summation, the resolution of the image improves,
as illustrated in Fig. S.1. The improvement is analogous to the increase in
resolution in an optical image obtained with shorter-wavelength radiation.
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FIG. 5.1 Increase in resolution as a function of the (sin 6/4),,,, of the data in the Fourier
summation. Section containing a condensed ring system: (a) sin0/4 <0.333A°%;
(b) sin 0/4 < 1 A™1. Source: Glusker and Trueblood (1985)

5.1.2 The Residual Density

The difference Ap(r) between the total electron density p(r) and a reference density
P.¢(r), is a measure for the adequacy of the reference density in representing the
system. Difference densities Ap(r) are obtained by Fourier summation in which the
coefficients AF are equal to the difference between the observed and calculated
structure factors. If k is the scale factor, as defined in chapter 4, the difference
structure factor AF is given by

AF = Fobs(H)/k - Fcalc(H) (5'8)

while the difference density is obtained by the Fourier transformation
1
Bp(F) = poul®) = Peuid) = |, T AF exp (= 27H:r) (5.92)
1]

We have introduced the boldface notation to underline that AF is a vector in
the complex plane (see Fig. 5.9), because both F,. and F,,,. are, in general, complex
quantities, as is evident from Eq. (5.6). The phase angles ¢ of the two vectors are
not necessarily the same, as is further discussed in section 5.2.5. In a different
notation we may write, like Eq. (5.5),

2 .
Ap(r) = v {Z (Agps — Acmc) €08 2nH 1 + Y (Byp, — Beyye) sin 2nH-r} (5.9b)

1/2 1/2
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When the model used for F,,. is that obtained by least-squares refinement of
the observed structure factors, and the phases of F_, .  are assigned to the
observations, the map obtained with Eq. (5.9) is referred to as a residual density
map. The residual density is a much-used tool in structure analysis. Its features
are a measure for the shortcomings of the least-squares minimization, and the
functions which constitute the least-squares model for the scattering density.

5.1.3 Least-Squares Minimization and the Residual
Density

The relation between the least-squares minimization and the residual density
follows from the Fourier convolution theorem (Arfken 1970). It states that the
Fourier transform of a convolution is the product of the Fourier transforms of
the individual functions: F(f *g) = f(f)ﬁ(g). If G(y) is the Fourier transform of

g(x):
1

N

and F(y) is the Fourier transform of f(x), then, according to the convolution
theorem,

G(y) = g(x) exp (ixy) dx (5.10)

(f+g) = F YF(f)E(@g) or J f(Og*(t — x) dt = f F(»)G*(y) exp (—ixy) dy

(5.11)
For f(tr) = ¢g(t), and the special case of x = 0, this reduces to Parseval’s theorem:
f | £l dx = f [F(p)I? dy (5.12)

which states that the space integrals over the square of a function f(x) and over
the square of its Fourier transform F(y) are equal.

Since Ap is the Fourier transform of AF, Eq. (5.12) implies that minimization
Of [ (Pops — Peare)® dr and of [ (F,, — F.,c)* dS are equivalent. Thus, the structure
factor least-squares method also minimizes the features in the residual density.
Since the least-squares method minimizes the sum of the squares of the discrepan-
cies in reciprocal space, it also minimizes the features in the difference density.
The flatness of residual maps, which in the past was erroneously interpreted as
the insensitivity of X-ray scattering to bonding effects, is an intrinsic result of the
least-squares technique. If an inadequate model is used, the resulting parameters
will be biased such as to produce a flat Ap(r).

It is of importance that expression (5.12) holds even when f(x) is known only
in part of space, as is the case in a crystallography experiment at finite resolution
determined by H_,,. Using the Fourier convolution theorem, we may write
(Dunitz and Seiler 1973)

2 Y (AF)*cos2nH-u = pr(r)Ap(r —u)dr = D(u) (5.13)

1/2

On the left is the Fourier transform of the even function (AF)?; on the right
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is the autoconvolution of the Fourier transform of AF. The term D(u) is the
Patterson function of the difference density of Eq. (5.9).
At u =0, Eq. (5.13) becomes

D)= = ¥ (AF)? = JAp(r)z dr (5.14)

2
V 1,2

This result is equivalent to Eq. (5.12), except that the left-hand side is no longer
an integral over all space, but a summation up to the limit of resolution.

The conclusion on the equivalence of direct-space and reciprocal-space
minimization is not completely flawless, because weights are assigned to the
observations in the least-squares refinement, so a weighted difference density is
minimized.

Dunitz and Seiler (1973) have used the equivalence to modify least-squares
weighting, such as to emphasize the fit near the density peak positions, in order
to obtain parameters less biased by bonding effects. The resulting weights
emphasize high-order reflections, similar to the higher-order refinement method,
but with a smoothly varying cut-off rather than a sharp sin 6/4 limit.

5.2 Deformation Densities
5.2.1 Definition of the Deformation Density

As discussed in the previous section, a residual density calculated after least-
squares refinement will have minimal features. This is confirmed by experience
(Dawson 1964, O’Connell et al. 1966, Ruysink and Vos 1974). Least-biased
structural parameters are needed if the adequacy of a charge density model is to
be investigated. Such parameters can be obtained by neutron diffraction, from
high-order X-ray data, or by using the modified scattering models discussed in
chapter 3.

The deformation density is defined as the difference between the total density
and the density calculated with a reference model based on unbiased positional
and thermal parameters. The deformation density is obtained by Fourier trans-
form, like the residual density [Eq. (5.9)], but with F,,. from the reference state
with which the experimental density is to be compared.

When observed structure factors are used, the thermally averaged deformation
density, often labeled the dynamic deformation density, is obtained. An attractive
alternative is to replace the observed structure factors in Eq. (5.8) by those
calculated with the multipole model. The resulting dynamic model deformation map
is model dependent, but any noise not fitted by the multipole functions will be
eliminated. It is also possible to plot the model density directly using the model
functions and the experimental charge density parameters. In that case, thermal
motion can be eliminated (subject to the approximations of the thermal motion
formalism!), and an image of the static model deformation density is obtained, as
discussed further in section 5.2.4.
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FIG. 5.2 Standard deformation density in the molecular plane of the oxalic acid molecule
at 15 K, calculated with structural parameters based on the high-order data. Contours are at
0.05 A3, Zero and negative lines are dashed (sin 8/4 < 0.71 A~1!). Source: Zobel et al.
(1992).

5.2.2 The Choice of a Model for the Reference State

5.2.2.1 The Standard Deformation Density

A common reference density, first used by Roux and Daudel (1955), is the
superposition of spherical ground-state atoms, centered at the nuclear positions.
It is referred to as the promolecule density, or simply the promolecule, as it
represents the ensemble of randomly oriented, independent atoms prior to
interatomic bonding. It is a hypothetical entity that violates the Pauli exclusion
principle. Nevertheless, the promolecule is electrostatically binding; if only the
electrostatic interactions would exist, the promolecule would be stable (Hirshfeld
and Rzotkiewicz 1974). The difference density calculated with the promolecule
reference state is commonly called the deformation density, or the standard
deformation density. It is the difference between the total density and the density
corresponding to the sum of the spherical ground-state atoms located at the
positions R;:
Ap(r) = p(r) — ppro(r) = p(r) ~ 3. p(R) (5.15)
An example of a standard deformation density, for oxalic acid dihydrate,
obtained at limited resolution using parameters from a high-order refinement, is
shown in Fig. 5.2. Oxalic acid dihydrate has been the subject of an extensive study
aimed at calibrating the techniques used in different laboratories. The map shows
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density in the bonds and in the lone-pair regions near the oxygen atoms of the
molecule.

While the presence of density accumulation in the bonds in an atom-
deformation map is indicative of covalent bonding, the opposite statement cannot
be made. The absence of a bond peak in the deformation density does not imply
the absence of covalent contributions to bonding, because, for elements with more
than half-filled shells, the neutral spherical atoms which are subtracted have more
than one electron per orbital. This is most easily illustrated through an example.
When a spherical oxygen atom with the configuration (15)2(2s)2(2p)* is subtracted
from a molecular density, 1.333 electrons are removed per valence orbital. The
extra one-third electron subtracted out in the bond region more than compensates
for the accumulation of density due to bond formation, and therefore causes a
depletion of density in the bond region relative to the spherical-atom reference
state. This explains the lack of density in the O—O bond in hydrogen peroxide
as observed by Savariault and Lehmann (1980), and the appearance of the bonds
in the deformation density of 1,2,7,8-tetraaza-4,5,10,11-tetraoxatricyclo[6.4.1.1%7]
tetradecane (Dunitz and Seiler 1983). Sections through the C—C, N—N, and
O—O0 bonds in the latter molecule (Fig. 5.3) shows the decrease in bond peak
heights towards the right of the periodic table, in agreement with the oxygen-atom
example given above.

The X-ray deformation maps of tetraazaoxatricyclotetradecane are in good
agreement with ab-initio results (Kunze and Hall 1987). Analysis of the theoretical
results confirms that the deformation features can be understood by viewing bond
formation as a two-step process: atom preparation followed by bond formation.
In the standard deformation density, the effects of atomic orientation, promotion
to an atomic bonding state, hybridization, charge transfer, and covalent bond
formation are superimposed. In other words, its features represent both the effect
of the orientation of atoms with a nonspherical ground state, such as C (3P), O
(®*P), or F (*P), and the effect of bond formation. Some of these are opposite,
leading to complications in the interpretation of the maps. For this reason,
alternative reference states can be useful. It is often opportune to use different
deformation densities in conjunction, rather than rely on a single reference state.

5.2.2.2 Oriented Atomic Reference States

The use of alternate reference states makes it possible to separate the steps which
lead from the nonoriented spherical atom to the atom in a molecule, and gives a
better understanding of the process of bond formation. In early studies on diatomic
molecules, Bader and coworkers used an atomic reference state for first- and
second-row atoms, such as N, O, F, S, and Cl, with a single vacancy in the po
bonding orbital, and the remaining p electrons averaged over the pr orbitals
(Bader et al. 1967, Bader and Bandrauk 1968, Cade et al. 1969). For fluorine, this
corresponds to a (1s?2s?2p22p}2p!) reference state, with the z axis along the bond
direction. Hall and coworkers further developed the partitioning and introduced
a reference state corresponding to a hybrid atom, defined by the (truncated)
localized molecular orbital (LMO) from an SCF calculation (Kunze and Hall
1986). The bonding hybrid in this LMO is described by the configuration sp®-3,
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FIG. 5.3 Selected sections through the deformation density of 4,5,10,11-tetraazaoxatricyclo-
[6.4.1.127] tetradecane. Contours are at 0.075 eA ~3. Full line for positive, dashed line for
negative and dotted line for zero density. Top: C—N—C; middle: C—N—N; bottom:
O—O—C. Source: Dunitz and Seiler (1983).

which represents the hybrid atomic orbital 10.37'/? (¢, + \/9747,,). The orthogonal,
fully occupied ¢ hybrid then has some p character and points away from the
bonded neighboring atom. Since the bonding hybrid is singly occupied in the
reference state, which is subtracted, the deformation density has a stronger buildup
of density in the bond region. The difference between the three functions is
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FIG. 5.4 Deformation densities for the F, molecule. (a) Total deformation density: molecule
minus spherical atoms. (b) Oriented atom deformation density: molecule minus oriented
atoms. (c) Hybrid deformation density: molecule minus hybridized atoms. Source: Kunze
and Hall (1986).

illustrated for F, in Fig. 5.4. It shows a depleted bonding region in the total
deformation density, some density in the oriented ground-state deformation
density, and a large extended bond region in the hybrid-atom deformation density.

A further subdivision of the steps involved in bond formation has been
made by Low and Hall (1990). Though their theoretical analysis cannot easily
be applied to experimental densities, it provides insight into the effects that
contribute to the features in an experimental deformation density. A distinction
is made between hybridization effects, including atomic orientation, polarization,
electron promotion, and orbital hybridization; delocalization effects, including
charge transfer between atoms; and the effect of constructive interference, which
is the energy-stabilizing combination of two atomic bonding orbitals, as in
Is, + lsg of Eq. (3.11). Subtraction of hybridized atoms from the electron



Fourier Methods and Maximum Entropy Enhancement 99

U
N

(b)

FIG. 5.5 Model deformation density in a plane containing a C—N and C—C bond in the
ligand of meso-[Co(hexaazacyclooctadecane)]Cl, at 106 K. (a) Independent-atom model
reference state. (b) Reference state of oriented-atom model with one electron in the
N-sp* lobe pointing toward the carbon atom. (sin 8/4),,,, = 1.3 A~'. Contour intervals
are at 0.05 eA ~3. Source: Morooka et al. (1992).

densities of first-row hydrides produces maps in which the values of the highest
contour correlate with the energies of the X—H bonds. Such a relation between
the deformation density features and the strength of a bond cannot be achieved
with standard deformation densities.

In the chemical deformation densities introduced by Schwarz and collaborators,
the density and the orientation of the atoms is quantitatively defined by variation
of the atomic orientation and orbital population such as to minimize the space
integral over the squared deformation density (Schwarz et al. 1989, Mensching et
al. 1989).

For HF, the F atom in the oriented reference state of the chemical deformation
density has 1.414 e (rather than 5/3 = 1.67 ¢ in the spherical atom, or 1 ¢ in the
oriented atom) in the po orbital, and 1.793 e (rather than 1.67 e in the spherical
atom, or 2e in the oriented atom) in each of the pn orbitals. As in Fig. 5.4(b)
and (c), the trough along the bond axis of the total deformation density
disappears, and the overlap density becomes evident.

An experimental example is shown in Fig. 5.5. The peak height in the C—N
bond increases from 0.32eA "3 to 0.68 eA 2 by the introduction of a prepared
reference state on the nitrogen atom.

5.2.2.3 The Fragment Deformation Density

If we are particularly interested in the nature of the bonding between the fragments
of a molecular complex, a fragment deformation density may be calculated by
subtracting fragment densities from the total distribution. In the case of a transition
metal complex, the fragment may be a metal atom plus ligand, or just the density
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FIG. 5.6 The ground state (left) and the low-lying excited state (right) of the C—H fragment.
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of the isolated ligand molecule. The former case is demonstrated by the subtraction
of three Co(CO); fragments from the density of the triangular metal complex
Co;CCI(CO), (nonacarbonyl-u;-chloromethylidene-triangulocobalt) (Hall 1982).
In this complex, the cobalt atoms are “terminated” by CO ligands, and the Co,
triangle is “capped” by the CC! ligand, oriented perpendicular to the triangle
plane. The bonding of the metal to the carbonyl groups removes density from the
regions of the metal-metal bonds. As a result, the metal-metal overlap density is
masked in the standard deformation density, but appears in the fragment
deformation density. Other theoretical fragment deformation densities reported
include those of several hydrogen-bonded dimers (Yamabe and Morokuma 1975,
Hermansson 1985) and organometallic compounds (Heijser et al. 1980, Hall 1986).

An experimental example is the subtraction of thermally smeared theoretical
CO molecular densities from the experimental density of chromium hexacarbonyl
Cr(CO)s. The map shows a decrease in o-density and an increase in n-density,
in agreement with the generally accepted o-donation, n-back-donation description
of metal-ligand bonding (Rees and Mitschler 1976). In a second example, the
fragment deformation density was used differently. In the complex Co;CH(CO),
molecule, the CH radial has a *I1 ground state, and a low-lying *X excited state
(Coppens 1985). The two states differ by promotion of an electron from a carbon
o to a carbon p, orbital (Fig. 5.6). The standard deformation map reproduced in
Fig. 5.7(a), as expected, shows density in the C—H bond. The fragment deforma-
tion densities obtained by subtraction of the two alternate ligand densities have
peaks in the = and o regions of the ligand C atom, respectively [Fig. 5.7(b) and
(c)]. The difference is a result of the promotion of an electron from the ¢ to the
p. orbital in the *X reference state, subtracted to obtain Fig. 5.7(c). Since different
features remain upon subtraction of the two different states, the density in the
bonded C—H ligand must be intermediate between the densities of the 2IT and
43 states of the isolated C—H radical.

The appearance of a deformation density depends crucially on the definition
of the reference state used in its calculation. This has occasionally been interpreted
as an ambiguity and an argument against the use of the deformation density as
an analytical tool. More precisely, a deformation density is meaningful only in
terms of its reference state, which must be taken into account in the interpretation.
The different deformation functions are complementary, and when used properly,
they provide detailed understanding of the steps in the bond formation process.
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(a) (b) ©

FIG. 5.7 Deformation density sections through the C—H ligand in Co,CH(CO),. Contours
at 0.1 eA~ 1. (a) Standard deformation density. (b) Fragment deformation density subtract-
ing 2IT density. (c) Fragment deformation density subtracting *Z density. Source: Coppens
(1985)

5.2.3 The Choice of Structural Parameters in the
Calculation of the Deformation Density

5.2.3.1 Deformation Densities

Let us suppose that the atomic positional parameters r; and the thermal smearing
factors 7; have been obtained by neutron diffraction. We can then calculate the
X-ray scattering of the procrystal density with spherical-atom X-ray scattering
factors, using

Foateon = Z Jixexp QriH 1 )T, 5 (5.16)

atoms

where the symbol N indicates that neutron parameters are used. The X-N
deformation density is then, in analogy to Eq. (5.9a), given by

1 .
pz)i(e?grmalion(r) = 'I; Z (Fobs,X - Fcalc,N) exXp ( —2niH- r) (5 1 7)
H

A first map of this kind is shown in Fig. 5.8. The X—-N deformation density
is thermally averaged, and has limited resolution as the summation in Eq. (5.17)
is truncated at the limit of the experimental observations. Since both F,,, and F_,,
are complex for an acentric structure, the structure factor phases are continuously
variable, and must be considered. Expression (5.17) can be rewritten as

|
p(l},e_fgrmation(r) = ;Z {‘Fobs,X[ Ccos [27[“']' - (Px(H)]
H

— |Feaic,v[ cos [27Hr — oy(H)]} (5.18)

In centrosymmetric crystals, with very few exceptions, ¢x(H) = @y(H) (=0
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FIiG. 5.8 Room-temperature X-N deformation density in the plane of the molecule of
s-triazine, showing features in the bond and lone-pair regions. Contours at 0.05eA ™!
Source: Coppens (1967).

or n) so that Eq. (5.18) reduces to
|Fcalc.N|

Fcalc.N

— F

[+

p;}’e‘f‘:rmuliun(r) = l Z <|Fobs.X' alc.N> cos 2nH-r (5.19)
VA

which is readily evaluated. But in acentric crystals, py(H) # @4(H). Thus, the

phase of (K, y — F_,,..x) in Eq. (5.17) will, in general, not be equal to ¢,(H), as

illustrated in Fig. 5.9.

In support of this conclusion, Hanson et al. (1973) found, for a large data set
on sucrose (with sin 8/4 < 0.81 A™!), a mean difference between the phases ¢y
from a spherical-atom refinement and ¢, from the spherical-atom calculation with
neutron parameters of 1.8°. A better approximation to the “true” phases is



Fourier Methods and Maximum Entropy Enhancement 103

@

»

L

[

©

g.’ Fu

E 1P - 1R " _rphase error
- AF=FoFu
Fy

real axis

F1G. 5.9 Phase angles in an acentric XN analysis: ¢y is the phase angle as calculated with
spherical-atom form factors and neutron positional and thermal parameters; ¢y is the
unknown phase of the X-ray structure factors which must be estimated for the calculation
of the vector AF. Use of {Fy| — |Fy| introduces a large phase error. Source: Coppens (1974).

obtained with the aspherical atom formalisms, which were not fully developed at
the time of the sucrose analysis. The phase contribution to the deformation density
is analyzed in more detail in section 5.2.6.

The X-N technique is sensitive to systematic errors in either data set. As
discussed in chapter 4, thermal parameters from X-ray and neutron diffraction
frequently differ by more than can be accounted for by inadequacies in the X-ray
scattering model. In particular, in room-temperature studies of molecular crystals,
differences in thermal diffuse scattering can lead to artificial discrepancies between
the X-ray and neutron temperature parameters. Since the neutron parameters tend
to be systematically lower, lack of correction for the effect leads to sharper atoms
being subtracted, and therefore to larger holes at the atoms, but increases in peak
height elsewhere in the X-N deformation maps (Scheringer et al. 1978).

The X—N deformation densities are important for the study of the charge
density distribution in and around hydrogen atoms. Without the extra effort
required for a neutron experiment, assumptions on the hydrogen atom location
and vibrations must be made which introduce a considerable uncertainty in the
results.

5.2.3.2 X-X Deformation Densities

As discussed in chapter 3, the valence electrons scatter mainly in the low-order
region. Consequently, refinement of high-order data, first proposed by Jeffrey and
Cruickshank (1953), yields parameters less biased by bonding effects. The X-X
deformation density is calculated with the high-order X-ray parameters, and is
defined as

1
pt)i(;i(rmation(r) = I_/ Z (Fobs.X - Fcalc,X high order) €Xp (— 27”“ 'r) (520)
H



104 X-ray Charge Densities and Chemical Bonding

AF(8) Jos foience (S)
N, moleculs | N atom

T

- 8inf/ x

FiIG. 5.10 Transform of the theoretical deformation density of the nitrogen molecule
(oriented with its axis along the vertical direction) (Feil 1977), compared with the valence
density scattering of the spherical nitrogen atom.

What is a proper lower cut-off for a high-order refinement? Assuming the
frozen-core approximation to be valid, the answer is dependent on the persistence
of valence scattering with increasing values of H. Examination of spherical-atom
scattering factors would suggest that beyond sin 6/4 = 0.6 A, valence scattering
is insignificant. But such a conclusion ignores the effect of bonding, which tends
to concentrate the density in certain regions of space and thus leads to scattering
at higher angles, as illustrated in Fig. 5.10 for the nitrogen molecule. Further
information is obtained by examination of the height of the density features in
deformation maps upon inclusion of additional high-order reflections in the
Fourier summation. Figure 5.11 shows the variation with (sin 8/4),,, of the
average peak heights in the bond- and lone-pair regions of an X—N deformation
map of the p-nitropyridine-N-oxide molecule. Very-high-order reflections are
available in this 30 K study, in which the effect of thermal motion is minimized,
though not fully eliminated. The peak heights in the bond regions level off at
about 1.05 A ™!, but for the lone-pair peaks contributions persist to much higher
angles. The extrapolated values marked on the y axis of Fig. 5.11 are obtained
with the assumption of isotropic Gaussian shape of the bond- and lone-pair
peaks.

The result implies that X—X maps will systematically underestimate lone-pair
peak heights, especially when the lower cut-off in the high-order X-ray refinement
is less than 0.75 A~'. The separation of structural and electronic effects in XX
maps is therefore incomplete. On the positive side, the exclusive use of X-ray data
has the advantage over the X—N technique that systematic errors tend to cancel
when only one data set is used. A third alternative, the use of structural parameters
from a charge density refinement of the X-ray data, avoids the arbitrary cut-off
of the X—X method, though it remains dependent on the adequacy of the scattering
model. For acentric structures, introduction of the aspherical atom least-squares
technique has the great advantage of providing an improved estimate of the phases
of the structure factor amplitudes.
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FIG. 5.11 Average peak heights in the X—N deformation density of p-nitropyridine-N-oxide
in the bonding and lone-pair regions as a function of the cut-off value §,,,, in the Fourier
summation (S = sin §/4). Circles are average values for the maxima in the C—C and C—N
bonds; crosses are average values in the lone-pair regions. The extrapolated limits for infinite
resolution p(0) are indicated, as well as the line describing the best least-squares fit. (Source:
Coppens and Lehmann 1976, Lehmann and Coppens 1977).

5.2.4 Combining Fourier and Least-Squares Methods:
The Model Deformation Density

The implications of a charge density least-squares refinement can be visualized by
calculation of the deformation density corresponding to the least-squares fitted
model.

The dynamic model deformation density is defined as

Apmodel(r) = pmodel(r) - preference(r) (521)

in which, in analogy to Eq. (5.3), the total model density is calculated with
1 :
pmodel(r) = I_/Z Fcalc,model(H) exp (*27[1“'[') (522)
0]

and the analogous expression with F,. .rerence iS Used fOr p,ererence: When the
summation is over all reciprocal lattice points within the experimental resolution
limit, and the calculated structure factors include the effect of thermal motion,
APmoder(r) as defined by Eq. (5.21) will be both thermally averaged and resolution
limited.

Alternatively, the model functions may be plotted directly, in which case a
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static density is obtained, provided thermal effects and chemical bonding have
been successfully deconvoluted. The image now is at infinite resolution; however,
detail beyond the resolution of the experiment will be that of the model functions
of the least-squares fitting.

The static model deformation density corresponding to the multipole refinement
results is given by

all atoms

Apmodel(r) = Z {Pi,cpcore(r) + Pi,uxspvalence(’cir)

max 1
+ Z KZ'SRI‘,I(K;".) Z Pl',lmj: dlmi(r/r)} - preference(r) (523)
1=0 m=0

Figure 5.12 shows both the dynamic and the static model deformation
densities in the plane of the oxalic acid molecule, based on the data set also used
for Fig. 5.2. The increase in peak height, due to higher resolution, and reduction
in background noise relative to the earlier maps is evident. The model acts as a
noise filter because the noise is generally not fitted by the model functions during
the minimalization procedure.

Static deformation density maps can be compared directly with theoretical
deformation densities. For tetrafluoroterephthalonitrile (1,4-dicyano-2,3,5,6-tetra-
fluorobenzene) (Fig. 5.13), a comparison has been made between the results of a
density-functional calculation (see chapter 9 for a discussion of the density-
functional method), and a model density based on 98 K data with a resolution of
(sin 0/4),,,, = 1.15 A~ ! (Hirshfeld 1992). The only significant discrepancy is in the
region of the lone pairs of the fluorine and nitrogen atoms, where the model
functions are clearly inadequate to represent the very sharp features of the density
distribution.

Hirshfeld (1984) found the electrostatic charge balance at the F nuclei, based
on the experimental deformation density, to be several times more repulsive (i.c.,
anti-bonding) than that of the promolecule. Very sharp dipolar functions at the
exocyclic C, N, and F atoms, oriented along the local bonds, were introduced in
a new refinement in which the coefficients of the sharp functions were constrained
to satisfy the electrostatic Hellmann—-Feynman theorem (chapter 4). The electro-
static imbalance was corrected with negligible changes in the other parameters of
the structure. The model deformation maps were virtually unaffected, except for
the innermost contour around the nuclear sites.

Some minor discrepancies between theory and experiment on tetra-
fluoroterephthalonitrile remain to be resolved. The peak densities in the
bonds are slightly but systematically lower in the theoretical than in the ex-
perimental maps. Analysis of the second moments of the pseudoatoms from the
Hirshfeld space partitioning (chapter 6) indicate a greater contraction into the
molecular plane in the theoretical than in the experimental study. Whether
such discrepancies are artifacts of the refinement model, the result of inter-
molecular interactions, or have another origin, is a question of considerable
interest.
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FIG. 5.12 Standard model deformation densities in the plane of the oxalic acid molecule at 15 K. (a) Dynamic model density (stn 0/ < 1.08 A~ ).

Contours at 0.05 eA ~3; zero level dotted lines; negative contours dashed lines. (b) Static model density. Contours at 0.10 eA 3. Source: Zobel et
al. (1992)
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FIG. 5.13 Standard deformation density of tetrafluoroterephthalonitrile in the mean mol-
ecular plane. Contour interval is 0.1 eA ™3, terminated at 1.5 eA 73, (a) Static model density
from multipole refinement. (b) Model from density functional calculation. (c) Molecular
diagram. Source: Hirshfeld (1984).
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5.2.5 Phase Contributions to the Deformation Density

The true phases of the structure factors will, in general, be different from the phases
calculated with the independent-atom model. In centrosymmetric structures, with
phases restricted to 0 or 7, only very few weak reflections are affected. In acentric
structures, only the reflections of centrosymmetric projections, such as the k0,
hOl, and Okl reflections in the space group P2,2,2,, are invariant.

The effect of phase differences on dynamic deformation density may be
estimated as follows (Souhassou et al. 1991). The amplitudes of the deformation
density Fourier series may be written as (Fig. 5.9)

AlF| = |Fopsl — |Ferl (5.24)

The deformation density Fourier series can thus be written as

1 . . .
Apdeformalion(r) = T/Z (1Fobst €Xp Kplrue(“) - lFre[' exp l(pref(H)) cXp (_27”H 'l')
H
(5.25)

where ¢, (=tan™ ' B/A) is the correct phase angle. Substitution of |F,,,| = A|F| +
|Fef] from Eq. (5.24) gives

1 , .
Apdef(r) = wl;z [(A|F| + ]Fref“ eXp i(plrue - 1Frefl exXp lq’ref] exp (-27”“‘]')
1 , .
= I_/Z A|F| exp i@y, €xp (—2niH 1)

1
+ 172 |Fre|[€XP i@y — €XP i@rec] €Xp (—27iH 1) (5.26)
In other words, the deformation density can be separated into structure-factor
magnitude and structure-factor phase contributions:
Ap = Ap(A[F]) + Ap(Ag) (5.27)

With Ag = @, — ¢, the phase-factor difference in the phase contribution
can be rewritten as

€XP iPrrue = EXP iQrer = €XP UPrer + AQ) — EXP iy
= exp i@ c[exp (iAp — 1)]
= XD i@, €Xp iA@/2[exp iAp/2 — exp (—iA@p/2)]
= exp [, + Ap/2)][2i sin (Ag/2)]

where i = \/—1 and 2i sin (A@/2) constitutes a phase factor, which may be written
as exp (in/2) to give

eXp i(plrue — exp i(pref = €Xp [i((pref + A(P/Z)] ' {2 exp (’n/z) Sin (A(p/Z)]
= 2sin (Ap/2) exp i{Q,es + A@/2 + 7/2)
= 2 sin (A(P/Z) exp [i((pref + Dirue + 7[)/2] (528)
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FIG. 5.14 Phase contribution to the deformation density in the indole ring of N-acetyl-L-
tryptophan methylamide. Contours at 0.05eA ~3; negative contours dashed lines; zero
contour omitted. Peak heights in the full deformation density are 0.4-0.5 A. Source:
Souhassou et al. (1991).

Thus, the phase contribution equals

1
Ap(Ap) = [—/Z 2|F,¢| sin (Ag/2) exp [{@rer + Purue + 7)/2F exp (= 27iH 1)
(5.29)

or, for small A,
1 . .
AP(AQJ) = ’V Z 'Eef‘ A(p exp [l((prcf + Ptrue + 7'[)/2] exp (—27UH'T) (530)

Because of the addition of n/2 in the exponent of Eq. (5.30), the waves of the
phase contribution are shifted by n/2 relative to those of the amplitude contribu-
tion, while their amplitudes are proportional to the phase difference.

The effect of the neglect of Eq. (5.30) can be quite large. For the peptide
N-acetyl-a,8-dehydrophenylalanine methylamide (space group Cc), for example,
the underestimate of the density is reported to be as large as 0.19 eA~! In
N-acetyl-L-tryptophan methylamide, which crystallizes in the space group P2,2,2,
with centrosymmetric projections, the features are somewhat smaller (Fig. 5.14),
but still important.
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5.2.6 The Variances and Covariances of the
Experimental Density

5.2.6.1 Errors in the Observed Density

To assess the significance of the features of the charge density, the propagation of
observational errors must be examined. Given the standard deviations in the
observations, and assuming a diagonal variance—covariance matrix of the observa-
tions, we may write, for the covariance between the densities at points 4 and B,

OPobs, 4 CPobs,B 2
= ' ’ Foo(H
Cov(pobs,Apobs‘B) Z 8|Fobs(H)| 6|Fobs(H)| g [| b. ( )l]

apobs A 6pobs B 2
- “— 0*[@ns(H)] (5.31)
OPars(H) 00 s(H) "

where F,,. is the structure factor on an absolute scale, and errors in the scale
factor, considered below, have been neglected.

Though Eq. (5.31) can be evaluated directly, provided the phase errors can
be estimated, it can be reduced to a simpler, computationally more convenient
equation for the average covariance in a density map (Rees 1976). For the space
group P1, Eq. (5.31) becomes

4
COV(Dobs, 4 Pobs. B) = % Y. 0*[F,p(H)] cos (2nr - H) cos (2nrz - H)
1/2

2
= 7 62(F,p)[cos 2n(r, + rg)H + cos 2n(r, — rg)-H]
1/2
(5.32)

The summation is over a hemisphere in reciprocal space.

The first term of Eq. (5.32) rapidly averages to zero as H,,,, increases, except
for points close to one of the centers of symmetry, where |r, + rg| has close to
integer value. If 6?(F,,,) does not vary systematically with H, the second term in
the square brackets may be replaced by its average over all directions and values
of H for a given distance |r, — ry|:

{cos 2n(r, — rg)*H)> = 3(sin u — u cos u)/u’ = C(u) (5.33)

with u = 2njr, — rg|H,,,. Substitution into Eq. (5.32) gives

2
COV(Pops, 4Pobs, B) = I C(u) Z 0*(Fyps) (5.34)

1/2

The function C(u), plotted in Fig. 5.15, is a measure for the correlation between
points 4 and B. As u is proportional to H,,, for a given value of |r, — rgl, the
correlation between adjacent points decreases with H, , , a manifestation of the
increased resolution on adding high-order data. The correlation between adjacent
points is generally positive, but it becomes slightly negative at u ~ 5.8.
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FIG. 5.15 Coefficient C(u) in the expression for the correlation coefficient between the

observed electron density at adjacent points 4 and B [Eq. (5.33)]. The variable
u = 2nlr, — rglH,... Source: Rees (1976).

The average variance follows from Eq. (5.34) by setting C(u) = 1:

az(pobs) = Gz(Fobs) (535)

V2 1/2
which is a well-known relation first reported by Cruickshank (1949), valid at a
sufficient distance from any symmetry element.

For other centric space groups, the most convenient way to derive the
covariance between p(r,) and p(rg) is to assume that the densities are calculated
as for P1, and then averaged over the n symmetry-equivalent positions. This leads,
for the averaged density g, to

- _ 1 u

Cov(pobs,A’ pobs,B) = ;az(pobs.G) Z C(znerI - rBileax) (536)
i=1

for the covariance, and for the variance

1 n
az(ﬁobs) = naz(pobs,G)[l + Z C(zn'rl - rileax)] (537)
i=2

in which p,. ; is the standard deviation at a general position before averaging,
and the sum is over all symmetry-equivalent positions. Equation (5.37) shows that
when r; —r; is small, that is, in the vicinity of a symmetry element, even the
variance depends on the correlation coeflicient C.

5.2.6.2 Errors in the Deformation Density

The variances and covariances of the deformation density result both from the
errors in the observations, and from the uncertainties in the refined parameters,
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including the scale factor. We will assume, for the sake of simplicity, that the errors
in the observations and the parameters are not correlated, as would be the case
for an X-N deformation density. We will assume further that the density functions
of the model are not subject to error, and that the true phases are known from a
least-squares refinement with an appropriate scattering model.

We start with

GZ(AP) = az(pohs - pcalc) (538)

The scaled total electron density p,,. = pows/k, Wwhere p_, is the density on the
experimental scale. Using the expression for propagation of errors given in Eq.
(4.31):

1 2(k 2(k
o (pobs) =0 (pobﬁ/k) ) O'2(pobe) + (pob:) O:i((z—) = O'(2)(pobs) + (pobs)z qi((zr)
(5.39)

where the subscript zero indicates that errors in the scale factor have been factored
out.

Taking into account the correlation between p.. and p.,. due to the
interdependence of the structural parameters and the scale factor, the error in the
calculated density is given by

a(u;)o(k)y(u;, k) (5.40)

8P are OP
2 cate) = 02 cale + cale obs
0 (Peatc) o(Pearc) ;Méui ok

where u; is a positional or thermal parameter, and y(u;, k) are the correlation
coefficients between the scale factor and other parameters (Stevens and Coppens
1976, Rees 1973).

The variance of the deformation density is obtained by combining Egs. (5.39)
and (5.40):

a*(k)

0
Y PPt o) ”y(u,,k)

GZ(AP) = 6(2)(pobs) + U%(pcalc) + (pobs)2 ~ A
(5.41)

The standard deviation in the observed density, g4(p..,), 1s derived as
described in the preceding section. The term o[p_,,(r)] follows from the errors in
the parameters and their correlations. Using Eq. (4.31), we obtain

o) o )
62(Peare) = Z( P ) o*u) + 25 Y (%)( g;““)a(u Yo(u;) 7w, u;)

i 5“, iPoj>i j
(5.42)

The derivatives in Eqgs. (5.41) and (5.42) can be readily evaluated from the
structure factor expression. The contribution to a[Ap(r)] due to the error in the
scale factor depends on the magnitude of p . (r). It is large wherever p,,, is large,
which is the case in the vicinity of the nuclei of heavier atoms. As a result, the
deformation density in these regions is quite unreliable.



114 X-ray Charge Densities and Chemical Bonding

cl

\\ AN

cr c{n o)

c
(c)
FIG. 5.16 Deformation electron density Ap = p,/k — p. in Cr(CO)g at a resolution
A/(2 sin 0),,,, = 0.66 A. (a) Deformation density averaged over symmetry-equivalent planes
in the molecule. Contour intervals at 0.05 eA ™~ 3; negative contours dotted. (b) Standard
deviation (not including the error in the scale factor) before averaging. Cr and C(1) are on
the mirror plane. Contour intervals at 0.025 eA 3. (c) Standard deviation (not including
the error in the scale factor) after averaging over symmetry-equivalent planes. Contours as
in part (b). Source: Rees (1976).

The covariance between the deformation densities at points 4 and B is given
by the analogous expression

COV(APA7 APB) = Cov(pobs,Apobs,B)/k2 + Cov(pcalc,Apcalc,B) + pobs‘Apobs,B[a(k)/k]z
(5.43)

in which the correlation between the scale factor and the other parameters has been
neglected.

An example of a deformation density and the associated error function is given
in Fig. 5.16. The complex Cr(CO)¢ has octahedral symmetry, but only one
diagonal mirror plane is retained in the crystal. The deformation density averaged
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over chemically equivalent, but crystallographically independent, sections through
the Cr—C—O atoms is shown in Fig. 5.16(a). The standard deviation before
averaging [Fig. 5.16(b)], peaks at ~0.18 eA ™3, except at the Cr nucleus, where it
is larger. After averaging, the errors are reduced [Fig. 5.16(c)], especially in regions
away from the nuclei, where the errors in p, rather than those in the least-squares
parameters, dominate. Away from the nuclei, the standard deviation is less than
0.025 eA "3, a value reached in many high-quality studies.

5.3 Maximum Entropy Enhancement of Electron Densities
5.3.1 The Mathematics of Entropy Maximization

The maximum entropy method (MEM) is an information—theory-based technique
that was first developed in the field of radioastronomy to enhance the information
obtained from noisy data (Gull and Daniell 1978). The theory is based on the
same equations that are the foundation of statistical thermodynamics. Both the
statistical entropy and the information entropy deal with the most probable
distribution. In the case of statistical thermodynamics, this is the distribution of
the particles over position and momentum space (“phase space”), while in the
case of information theory, the distribution of numerical quantities over the
ensemble of pixels is considered.

The probability of a distribution of N identical particles over m boxes, each
populated by n; particles, is given by

N!
P__

n'nytng! . on,!

(5.44)

As in statistical thermodynamics, the entropy is defined as In P. Since the
numerator is constant, the entropy is, apart from a constant, equal to

S = —Z nlnn, (5.45)

where Stirlings’ formula (In N! = NIn N — N) has been used.
In case there is a prior probability g; for box i to contain n, particles, expression
(5.45) becomes

N!
P=— % qgiy'qg%...qu (4.46)
ninylng!. .o n,!

which gives, for the entropy expression,

S=—Zn,-lnn,~+2n,-lnq,-=—z n; In (5.47)

nl

i=1 q;

The maximum entropy method was first introduced into crystallography by
Coltins (1982), who, based on Eq. (5.47), expressed the information entropy of the
electron density distribution as a sum over M grid points in the unit cell, using



116 X-ray Charge Densities and Chemical Bonding
the entropy formula (Jaynes 1968)

ﬁmn——zmnmﬁ; (5.48)
where both p(r) and m(r) are fractional quantities defined as
p(r;) Polr;)
p(r;) = p; = I and mr)=m; = ———3 5.49
DY S DM oy 0P

The subscript zero refers to the prior density. Note that p(r) is proportional
to the probability of finding an electron at r, and m(r) is proportional to the prior
probability of finding an electron at r.

Expression {5.48) is applied in an iterative procedure. The entropy S[p(r)] is
maximized subject to the constraint

F{(H) — Fy(H)[?
o(F,) I

where N is the number of unique observations, and F " js obtained by summation
over the M grid points:

=N (5.50)

Clpm =x*= X, |

k=1

F8o(H) = VA; cell Z p(r;) exp {2niH, r;} (5.51)
=1
with suitable scaling to F°*, If the constraint of Eq. (5.50) were not introduced,
maximizing the entropy would invariably produce a uniform distribution, which
corresponds to the maximum entropy.

The constraint is enforced by introducing a Lagrangian multiplier / in the
minimization function given by

L(2) = S(p(r)) — Ax’ (5.52)

When convergence is reached, the gradient of the minimization function equals
zero:

V(L) = V,(8) — AV,(x*) =0 (5.53a)
or, equivalently,
V.(S) = AV,(x*) (5.53b)
For each grid point j, this corresponds to
o5 =] LXZ (5.54)
op; op;

In the case of a uniform prior, po(r;) = po; = po for all grid points j, and
differentiation of S, using Eq. (5.48), gives

1
B (555)
Pi %
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where A4 is a constant. Substitution into Eq. (5.54) leads to
; ac
pj=Aexp{—/.(ij)} (5.56)
ap;

A can be selected as
A=xexp{) p;jlnp;} (5.57)

The quantity 4 is a weighted logarithmic average of the converged entropic
density p(r) over the unit cell. The selection of an optimal value of A is discussed
in the literature (Papoular et al. 1992). The value of 4 corresponds to the expected
density far away from any atom, and reconstructed density values smaller than A4
are considered unreliable.

Since

calc(H)

dp;
the density at r; in the (n + 1)th iteration is obtained with Eq. (5.56) as

= exp 2niH 1,

p(rj,n+ 1) = exp [ln Z p;jIn p(n) + AF(0) Z (H)2

X | Fops(H) — Fop(H)| exp 27iH- r] (5.58)
with
F(O) uml cell Z p(l' )

The algorithm of entropy maximization is nonlinear, and must therefore be
applied iteratively. It is possible to solve for both A(n + 1) and p(n + 1), starting
from i(n) and p;(n) at each iteration n. The starting values are A(0) ~ 0, and p;(0)
equal to the prior density. Achieving convergence involves a two-step process, in
which first the x> = N constraint is satisfied, and subsequently the entropy S is
maximized. In a variation of the method, 4 is kept fixed at a small value adequate
to ensure convergence (Sakata and Sato 1990).

After completion of the MEM enhancement, it becomes possible to evaluate
the reflections missing from the summation. In a Fourier summation, the
amplitudes of the unobserved reflections are assumed to be equal to zero, while
the MEM technique provides the most probable values.

When extinction is present in the data set, it must be corrected for before the
MEM procedure is started. The structure factors must similarly be corrected for
anomalous scattering, if present. Both corrections require a model for their
evaluation. The independent-atom model is usually adequate for this purpose.

5.3.2 Application of MEM to Single-Crystal Data
on Silicon

A particularly interesting application of the MEM is the analysis by Sakata and
Sato (1990) of the very accurate Pendelldsung data of Saka and Kato (1968). With
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TABLE 5.1 MEM Prediction of some of the Weak Reflections of Silicon

Experimental

Reflection MEM Value Value Reference
222 1.5270 1.456 (8) Alkire et al. (1982)
442 —0.0349 —0.0370 (23) Tischler and Batterman (1984)
622 -0.0112 +0.0088 (11) Tischler and Batterman (1984)
644 —0.0126
662 0.0121
842 —0.0130

the known phases of the silicon structure, convergence is achieved rapidly. The
data set does not contain the weak spherical-atom-forbidden reflections with
h+k+1=4n+2, but it is clear from inspection of the MEM map that the
bonding density, to which the weak reflections make the major contribution, is
well accounted for. Calculation of the missing reflections shows that the values
for the (222) and (442) reflections are very close to the observed ones. This is not
the case for the very weak (662) reflection, which, though of proper magnitude,
has the incorrect sign (Table 5.1).

When it is assumed that the phases of the structure factors are unknown, the
analysis proceeds well, after fixing the origin of the cubic unit cell by choosing the
sign of the strong (111) reflection. This corresponds to a direct structure
determination without any prior knowledge of the structure, and supports
the value of the maximum entropy method in the early stages of structure
determination.

The silicon data are of unusual accuracy, and the result may not be typical
of those obtained with more noisy data. Even for Si, it is found that the distribution
of the discrepancies between F°* and F'° after the MEM procedure often
deviates greatly from the ideal Gaussian distribution, with large discrepancies
being observed for a few strong low-order reflections (Jauch and Palmer 1993,
Jauch 1994). This points to the weakness that optimization of the entropy, subject
to the constraint 32 = N, constrains the variance of the distribution, but not its
shape. Assignment of a weighting factor equal to [H|™* to each of the terms in the
summation of Eq. (5.47) has been reported to give improved distribution of the
residual errors (De Vries et al. 1994).

5.3.3 The Two-Channel Maximum Entropy Method

There are ample indications that the maximum entropy method is of limited use
when the densities to be reconstructed have a large dynamic range and the aim
is to recover the fine detail of the distribution. In the analysis of the y-ray data
on MnF, and NiF,, the atomic peaks are hardly affected by the choice of starting
values of the density function, but the low-density bonding regions tend to be
contaminated by artifacts (Jauch and Palmer 1993, Jauch 1994). For a simulated
promolecule data set for the molecular crystal a-glycine, containing 1205 structure
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factors, the general tendency of the maximum entropy method to sharpen strong
features, but flatten weak features, leads to a significant flattening of the maxima
at the hydrogen-atom positions, and the appearance of sharp spikes at the
positions of the heavier atoms (Papoular et al. 1996).

The dynamic range can be reduced greatly by applying the maximum entropy
method to the deformation density. As the entropy functional S{p(r)] defined by
Eq. (5.48) requires a positive density everywhere in the unit cell, a two-channel
method is used in which Ap(r) is defined as the difference between two positive
functions, p* (r) and p ~(r), representing the densities of excess and lack of electrons,
respectively. The two-channel method was first applied to magnetization densities
(Papoular and Gillon 1990a, b) and to neutron diffraction results involving atoms
with scattering lengths of opposite signs (Sakata et al. 1993). In both cases, positive
as well as negative scattering density occurs.

At a given r; in the unit cell, either p*(r) or p~(r) is significant, excess and
lack of scattering density being mutually exclusive. As described by Papoular et
al. (1966), the related probabilities p*(r;) and p~(r;) are defined as
_ P+(r,') n “(r) = p (r;)

Z {P+(rj) + P_(rj)} and pr(ry) Z {P+(rj) + P‘(rj)} (-59)

In analogy to Eq. (5.49), the prior models m™(r) and m™(r) are introduced,
and the two-channel entropy is defined by

P+(rj)

& p/ p;
S[Apl ==Y {pf In~ +p; In %} (5.60)
ji=1 mj ’nj

The entropic densities then follow from equations equivalent to Eqs. (5.56)
and (5.57):

) L\ acC .
o =avol-A(T o +01) S joim ot
j
and
- , _,\ocC i
p; =A exp{—/v(z {p; + p; }) ~(§l-)[é)~]} ji=4LM (5.61a)
j
with
M
A=exp<z [pfInp/ +p;in p;]) (5.62)
j=1
Since
oCLp] _ oClp]
apj' apj—
the positive and negative scattering densities are related by
pjfp; = A* (5.63)

It follows that in a given pixel {r;}, either p;” or p; can have a value larger
than A, which is taken as a measure of the significance level. The relation of Eq.
(5.63) reduces the number of unknowns to one per pixel as in the one-channel
maximum entropy method.
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In the application of the two-channel method to a-glycine, use of a uniform
prior density sharpens and enhances the bond peaks relative to the observed
deformation density, but suppresses the lone-pair peaks to much lower levels. The
use of the multipole refinement deformation density as a nonuniform prior gives
better results and some increase in detail.

The electrostatic properties of the molecule may be used as a criterion for
judging the MEM enhancement. Using the uniform prior density, the MEM
molecular dipole moment derived by the discrete boundary partitioning of space
(chapter 6) is only 1.3 D, compared with 9.1 D based on the experimental density,
13.8 D from the multipole population parameters, and a solution value of 11.6 D.
With a nonuniform prior, a more acceptable, but still low, MEM value of 7.8 D
is obtained. While this physical criterion shows the nonuniform prior to be
preferable, the validity of the MEM enhancement in charge density studies remains
to be assessed.



6

Space Partitioning and Topological
Analysis of the Total Charge Density

In partitioning space in the analysis of a continuous charge distribution, the
requirement of locality, formulated by Kurki-Suonio (Kurki-Suonio 1968, 1971;
Kurki-Suonio and Salmo 1971), should be preserved. It states that density at a
point should be assigned to a center in the proximity of that point. In discrete
boundary partitioning schemes, the density at each point is assigned to a specific
basin, while in fuzzy boundary partitioning, the density at the point may be
assigned to overlapping functions centered at different locations.

The least-squares formalisms described in chapter 3 implicitly define a space
partitioning scheme, based on the density functions used in the refinement that
are each centered on a specific nucleus. Since the density functions are continuous,
they overlap, so the fragments interpenetrate rather than meet at a discrete
boundary. Such fuzzy boundaries correspond to smoothly varying functions, both
in real and reciprocal space, and therefore to well-behaved fragment scattering
factors, and reasonable fragment electrostatic moments. The interpenetrating-
fragment partitioning schemes are related to the Mulliken and Lewdin population
analyses of theoretical chemistry.

The topological analysis of the total density, developed by Bader and
coworkers, leads to a scheme of natural partitioning into atomic basins which
each obey the virial theorem. The sum of the energies of the individual atoms
defined in this way equals the total energy of the system. While the Bader
partitioning was initially developed for the analysis of theoretical densities, it is
equally applicable to model densities based on the experimental data. The density
obtained from the Fourier transform of the structure factors is generally not
suitable for this purpose, because of experimental noise, truncation effects, and
thermal smearing.

The topological analysis of the density leads to a powerful classification of bond-
ing based on the electron density. It is discussed in the final sections of this chapter.

121
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6.1 Methods of Space Partitioning
6.1.1 The Stockholder Partitioning Concept

The stockholder partitioning concept is one of the important contributions to
charge density analysis made by Hirshfeld (1977b). It defines a continuous
sampling function w(r), which assigns the density among the constituent atoms.
The sampling function is based on the spherical-atom promolecule density—the
sum of the spherically averaged ground-state atom densities. The sampling
function w(r) for atom i is defined by the relative contribution of atom i to the
promolecule density:

W-(I') — pspherical alom(r)/z pgphericalatom(r) — pgpherical atom(r)/ppromolecule(r) (6 1)
t i t i M

The density assigned to atom i is given by

PE(r) = wi(r) p'2(r) (6.2)
or, equivalently, A
p(r) = wi(r) Ap(r) + piPPeric(r) (6.3)

Accordingly, each atom is assigned a fraction of the charge density at a point
proportional to its “investment” in the promolecule density at that point. This is
the basis of the stockholder concept. We note that Eq. (6.3) can be reformulated as

Api(r) = wi(r) Ap(r) (6.4)

Figure 6.1 shows the stockholder decomposition of the theoretical deformation
density of the cyanoacetylene molecule, H—C==C--C==N (Hirshfeld 1977b). The
overlap density in the bonds is distributed between the bonded atoms. The
assignment of part of the density near the hydrogen nucleus to the adjacent carbon
atom manifests the difference between fuzzy and discrete boundary partitioning
methods.

Once the partitioning has been accomplished, net atomic charges, atomic
electrostatic moments, and other physical properties are obtained by straight-
forward integration using the expectation value expression

0> = j Op(r) dr (6.5)

in which O is the operator for the desired property, and V; is the volume of
integration.

Net atomic charges based on the stockholder partitioning of theoretical
densities for a number of linear molecules containing N, C, and H are listed in
Table 6.1. For these molecules, the charge transfer between atoms is relatively
small. Much larger values are obtained for more electronegative atoms, such as
oxygen and fluorine bonded to carbon atoms.

The stockholder recipe partitions the density according to each atom’s
contribution to the promolecule density. The partitioned fragment distributions
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FIG. 6.1 Molecular deformation density: (upper figure) Ap in cyanoacetylene, derived
from SCF wave function of McLean and Yoshimine (1967), resolved into bonded-
atom fragments; (Iower figure) Ap for H, C, and N shown below symmetry axis, two other C
atoms above axis. Contour interval is 0.1 eA ™2, zero contours are dashed lines, nega-
tive contours are dotted lines; inner contours around heavy nuclei have been omitted

(Hirshfeld 1977a).

TABLE 6.1 Net Charges ¢ (e) from the Stockholder Partitioning.”

Charges in the Second Row are from a Discrete Boundary

Partitioning by Politzer (1971) and Politzer and Reggio (1972)

HCN H C
q +0.133 +0.066
+0.18 0.0
HCCCN H C
q +0.124 ~0.015
+0.18 ~0.06
HCCH H C
q +0.094 —0.094
+0.14 ~0.14
NCCN N C
q ~0.126 +0.126
-0.10 +0.10

N
—0.201
—0.18

—0.031
—0.05

—0.094
-0.14

C
+0.126
+0.10

C
+0.096
+0.09

H
+0.094
+0.14

N
—0.126
—-0.10

—0.176
—0.16

* Small Charge imbalances reflect errors in the numerical integration. Source: Hirshfeld

(1977b).
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therefore tend toward their values in the promolecule. As a result, the stockholder
charges and higher moments are often somewhat smaller than those from other
partitioning methods.

6.1.2 Space Partitioning Based on the Atom-Centered
Multipole Expansion

The atom-centered multipole expansion used in the density formalisms described
in chapter 3 implicitly assigns each density fragment to the nucleus at which it is
centered. Since the shape of the density functions is fitted to the observed density
in the least-squares minimalization, the partitioning is more flexible than that
based on preconceived spherical atoms.

Two disadvantages of multipole partitioning should be mentioned. The first is
that any density not fitted by the model is discarded in the partitioning process.
Examination of the residual density is required to ensure the completeness of the
set of modeling functions. The second is that very diffuse functions of the model,
if included, violate the requirement of locality discussed above, and may lead to
counterintuitive results.

Nevertheless, multipole partitioning leads to very acceptable molecular electro-
static moments, as fully discussed in chapter 7.

6.1.3 Atomic Fragments Defined by Discrete
Boundaries

The integration of the charge density over a region defined by discrete boundaries
fits conventional ideas about area partitioning, and obeys the requirement of
locality. Kurki-Suonio and coworkers examined the charge density integrated over
a sphere centered on the ion, as a function of the radius of the sphere. The results
for NH,Cl (Vahvaselkd and Kurki-Suonio 1975), based on powder data, are
shown in Fig. 6.2. The minimum in the radial density is defined as the radius of
best separation. The 18-electron sphere for Cl~ terminates somewhat beyond this
radius of best separation, indicating incomplete charge transfer from the cation
to the anion. The electronic charges at best separation are found to be 17.55 and
9.55 e. Similar analyses of a series of alkali halides and metal oxides like MnQO,
Co0, and NiO lead to quite reasonable charges. But charge neutrality is not
maintained because voids between the atomic spheres remain unassigned, and
ionic spheres may overlap, as is the case for NH,Cl. For NH,C], the radii of best
separation are Re, = 1.75 A and Ry, = 1.76 A, the sum of which exceeds the
interionic distance by 4.6%. As a result, the sum of the electron counts, which is
27.1 e, is slightly larger than the number of electrons in the complex.

The violation of electroneutrality can be avoided by using a space-filling
model. Such a model must fulfill the condition

Z V, = Vasymmetric unit (66)

that is, all of space must be accounted for.



Space Partitioning and Topological Analysis 125

301L4mjg{»&")

4nr?g (A7)

or NH;

05 10 15 20 r(A)
(a)

FIG. 6.2 Radial charge density 4nr?p(r) as a function of the radius of the sphere, based
on powder data on NH,Cl: (a) NH;; (b) Cl™. The shaded regions represent the boundaries
which lead to populations of 10.0 + 5 and 18.0 + 5 electrons for NH, and Cl~, respectively.
Source: Vahvaselkd and Kurki-Suonio (1975).

In the theory of metals and alloys, the Wigner—Seitz cell is defined by planes
perpendicular to the interatomic vectors. Analogously, the boundary between two
molecules or molecular fragments can be defined by using the relative sizes R,
and Ry of atom A in molecule I and the adjacent atom B in molecule I1.

Let r .5 be a unit vector pointing from atom A to atom B (Fig. 6.3). To achieve
the partitioning of the space between the two molecules, the vectors from atoms
A and B to the point i are projected on the interatomic vector, and the ratio of
the two projections is compared with the ratio of the Van der Waals radii of the
two atoms. The selection criterion is

(r; — rA)'rAB?< (r;—rg)rp,
R, > R,
If the ratio on the left is the smallest, the point i belongs to atom A, and thus
to molecule I, and vice versa. The discrete boundary Van-der- Waals-ratio partition-

(6.7)

boundary plane

ri-Ta

/

A Mg B

FIG. 6.3 Definition of vectors used in discrete boundary space partitioning.
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ing results in boundary planes perpendicular to the interatomic vectors r . Their
exact location depends only on the ratios R ,/Rg.

The result of the integration will be less sensitive to the exact position of the
boundary when the density in the boundary area is small, which means that
integration over the deformation density is preferable. Because covalently bonded
atoms overlap significantly, the method is suitable for obtaining ionic or molecular
charges but not for separation of atoms in a molecule. It should not be used for
the latter purpose.

The molecular boundary for the formamide crystal, defined according to Eq.
(6.7), is shown in Fig. 6.4. The molecular volume is defined by the sum of the
volumes of small parallelepipeds around each of the points assigned to the
molecule.

The integration over discrete units of space can be performed directly from
the structure factors. Starting from Eq. (6.5) and substituting for p(r) the Fourier
summation over the structure factors, we obtain, for the thermally averaged
density,

0 = ! J O(r) Y. F(H) exp 2niH r) dr (6.8)
V Vr H
or

<O> = :/j OA(r){<p>promolecule + z AF(H) cxp (27‘[iH 'l‘)} dr (69)
Vr H

in which the angle brackets indicate that the density is thermally averaged.
For the charge and dipole moment operators

J 6<p>promolecule dr =0 (610)
Vr

The higher moments are generally not zero for the promolecule, but can be readily
derived as discussed in chapter 7.

Series truncation effects due to the experimental resolution limit are reduced
when the core- or spherical-atom densities are subtracted from the Fourier
summation, as in Eq. (6.9).

Suppose the volume of integration is centered at r;. Expression (6.8) can then
be rewritten as

0> = :72 [F(H) exp (2niH-ri)f O(r) exp 2niH-(r—r,)) dr] (6.11)
H Vs

In other words, the desired property is obtained by multiplying each structure
factor in the conventional summation by the Fourier transform of the operator,
integrated over the volume element of interest. For the net charge, the operator
O =1, and the integral is referred to as the shape transform of the volume of
integration.

When the molecular properties are to be evaluated, the volume of interest is
irregularly shaped, except for the simplest molecules. To facilitate integration, the
volume may be subdivided into integrable subunits of volume v;, with Y v; = V7.
Since the Fourier transformation is additive, the sought-after result may be
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FIG. 6.4 Molecular volume of the formamide molecule. The heavy line denotes the discrete
molecular boundary obtained with Eq. (6.7) and van der Waals radii: O, 1.4; N, 1.5; C, 1.7;
and H, 1.2 A. The density is a theoretical difference density in the plane of the molecule
according to a wave function given by Snyder and Basch (1972). Contours are at 0.05 eA =3
intervals. Negative contours are denoted by short dashed lines and the zero contour by
the long dashed line. Source: Moss and Coppens (1980).

obtained by summation over the subunits:

<0 = %/[F(H) z {(J O(r) exp QniH(r —r,) dr)) exp (2niH°ri)}] (6.12)

i
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or, substituting
s;(H) = f é(r) exp 2riH(r —r;)) dr (6.13)

1

0> = -Y F(H) Y s,(H) exp niH r,) = Il/z F(H)S,(H) (6.14)
H i H

1

AN

where
Sp(H) =3 s;(H)exp 2riH 1)) (6.15)
For the higher moments, s; depends on the location of the subunit i. But in
the case of the net charge, all s; are equal, provided the subunits have identical
shape. When the subunits are parallelepipeds with edges of length 26,, 25,, and
20, parallel to the crystallographic axes, as in Fig. 6.4, the shape transform of the
subunit, so(H), is of a particularly simple form (Weiss 1966, Coppens and Hamilton

1968):
sin 2nh (fsi‘> sin 2mk <5> sin 2nl<§5>

a b ¢

2nh (53—’) 2nk (é5> 2nl <62>
a b c
. (2mhé,\ . (2nkS,\ . [2nld,
= U]o( )]0( y)]o( ) (6.16)
a b c

where v is the volume of the subunit. As the Bessel function j,(x) decreases rapidly
with x (Fig. 6.5), high-order reflections contribute relatively little to the integrated
charge. This is because their contributions to the density vary rapidly in space,
and thus will integrate to values close to zero when integration is over a large
volume. Therefore, series-truncation effects are less important than in the calculation
of the total density.

so(H) = v

io(X)W
0.8

] 0.6

" 0.4

0.2

o; /\ N P

v

0.4 T T T T l
0 5 10 15 20 25

FIG. 6.5 The spherical Bessel function jy{x).
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The error in a derived property <O follows directly from the experimental
standard deviations in the structure factors:

1
o*(K0)) = % Y. S(H)*e’[F(H)] (6.17)
H

assuming that the errors in the structure factors are not correlated (i.e., the
variance—covariance matrix M, of chapter 4 is a diagonal matrix). The direct
space integration for the dipole and higher moments is discussed in chapter 7.

6.1.3.1 An Example: Charge Transfer in
TTF-TCNQ

An example of discrete boundary charge integration is the study on the organic
charge transfer salt tetrathiofulvalene-tetracyanoquinodimethanide (TTF-TCNQ)
(Coppens 1975, Coppens et al. 1987), which is a well-known low-dimensional
conducting organic solid. The crystal contains homogeneous stacks containing
either TTF or TCNQ molecules (Fig. 6.6). As the two molecules have strongly
different electronegativities, charge transfer occurs from the donor TTF to the
acceptor TCNQ. Less than a full electron is transferred per molecule, leading to
mixed molecular valence in each of the stacks. For a time-averaged experiment,
all molecules are equivalent, as the electrons hop rapidly between the molecules.
As a result of the incompleteness of the charge transfer, the one-dimensional
conduction bands along the direction of the homogeneous molecular stacks are
not fully filled, and the solid has a high conductivity in the stacking axis (the
monoclinic b axis) direction.

Since the molecular volumes of neither the TTF nor the TCNQ molecule are
easily described by a regular volume of integration, the parallelepiped subunit
method was used and integration of the valence density was performed using Egs.

FIG. 6.6 Homogeneous stacking of TTF and TCNQ molecules along the short b axis in
the monoclinic crystals of TTF-TCNQ. Source: Coppens et al. (1987).
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TABLE 6.2 Results of Charge Integration of the TTF-TCNQ Data

Valence Electron Population:

With 2%,
Van der Waals Radii Used Scale
(A) Uncorrected Correction
S N C H Preng Pre Preng Pre
1.85 1.50 1.75 1.1 72.45 51.56 72.57 51.44
1.85 1.55 1.65 1.2 72.50 51.51 72.62 51.39

Source: Coppens (1975).

(6.12)-(6.15). The results show only a modest variation when the van der Waals
radii are changed within reasonable bounds (Table 6.2). As the data were not
refined with the aspherical atom formalism, the scale of the observed structure
factors may be biased, an effect estimated on the basis of other studies (Stevens
and Coppens 1975) to correspond to a maximal lowering of the scale by 2%
Values corrected for this effect are listed in the last two columns of Table 6.2. Since
neutral TTF and TCNQ have, respectively, 72 and 52 valence electrons, the results
imply a charge transfer close to 0.60 e.

After publication of the X-ray study, the charge transfer was obtained from
the reciprocal-space position of the satellite reflections, which occur in the
diffraction pattern at temperatures below the Peierls-type metal-insulator transition
at 53 K (Pouget et al. 1976). Assuming that the gap in the band structure occurs
at twice the Fermi wavevector, that is, at 2k, the position of the satellite reflections
corresponds to a charge transfer of 0.59 e, in excellent agreement with the direct
integration. The agreement confirms the assumption that the gap in the band
structure occurs at 2kg.

6.2 Space Partitioning Based on the Topology of the Total
Electron Density

6.2.1 The Definition of Critical Points

Bader (1990) has emphasized the necessity to base the definition of atoms on the
physical structure exhibited by the electronic charge distribution, which is, in
Bader’s words, “a physical manifestation of the forces acting within the system.”
The dominant feature in the topology of the charge density is the occurrence of
local maxima at the positions of the nuclei as a consequence of the attractive
interaction of the electronic density and the nuclei. The maxima of the electron
density are critical points, at which the first derivatives of the density are equal
to zero, and the curvatures of the density in all directions are negative, that is, the
slope of the density decreases along any path passing through the position of a
maximum.
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The gradient vector of the density in the Cartesian coordinate system i, j, and
k is defined as

Vo(r) =i

dp(r) . 0p(r) dp(r)
k B
0x + ay * 0z (6-18)

At a critical point, Vp(r) equals zero because each of the three contributions to
Eq. (6.18) are zero. The classification of critical points is based on the second
derivatives, which as noted above are all negative for a density maximum, but
have different signs for saddle points and minima of the distribution.

The Hessian matrix H(r) is defined as the symmetric matrix of the nine second
derivatives 9?p/dx; 0x;. The eigenvectors of H(r), obtained by diagonalization of
the matrix, are the principal axes of the curvature at r. The rank w of the curvature
at a critical point is equal to the number of nonzero eigenvalues: the signature o
is the algebraic sum of the signs of the eigenvalues. The critical point is classified
as (w, o). There are four possible types of critical points in a three-dimensional
scalar distribution:

(3, —3) Peaks: all curvatures are negative and p is a local maximum at r_.

(3, —1) Passes or saddle points: two curvatures are negative, and, at r,, p
is a maximum in the plane defined by the axes corresponding to
the negative curvatures; p is a minimum at r, along the third axis
which is perpendicular to this plane. The (3, — 1) critical points are
found between every pair of nuclei considered linked by a chemical
bond.

(3, +1) Pales: two curvatures are positive, and, at r,, p is a minimum in the
plane defined by the axes corresponding to the positive curvatures;
p is a maximum at r, along the third axis which is perpendicular
to this plane. The (3, + 1) critical points are found at the center of
a ring of bonded atoms.

(3, +3) Pits: all curvatures are positive and p is a local minimum at r,.

In an isolated molecule, or cluster of atoms, the Poincaré—Hopf relationship
N(peaks) — N(passes) + N(pales) — N(pits) = 1 (6.19)

holds. This can be checked quickly for simple molecules: if there is no ring, the
number of bonds (number of passes) is one less than the number of atoms (number
of peaks), and there are no pales or pits. For each ring, the number of bonds is
increased by one, but a pale is created at the same time.

In an assembly of molecules such as a molecular crystal, there are minima,
that is, pits, in the voids between the molecules, and the Poincaré-Hopf relation
is replaced by the Morse equation (Johnson 1992)

N(peaks) — N(passes) + N(pales) — N(pits) =0 (6.20)

The function Vp(r) defines a field of vectors directed at each point along the
gradient of the charge density. The gradient vectors originate at critical points with
positive curvature, and terminate at points with negative curvature. Thus, the
gradient vectors terminate at the maxima of the distribution (these, in general,
coincide with the atomic nuclei), which are therefore called the attractors of the
distribution.
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Aty

(2,0

FiG. 6.7 lllustration of (2, —2), (2, +2), and (2,0) critical points in a two-dimensional
distribution, representing a maximum, a minimum, and a saddle point, respectively.
Gradient vectors originating and terminating in the critical points are shown. The bond
path in the lower figure corresponds to the horizontal line containing the two gradient
vectors emanating from the (2, 0) critical point. Source: Bader (1990), Bader and Laidig
(1991).

The saddle point between two atoms is a (3, — 1) critical point. The saddle
point is the origin of the gradient vectors along the direction in which the density
is a minimum. The gradient vectors in this direction link the (3, — 1) critical point
with the atoms, and constitute the bond path, connecting the atoms. In the plane
perpendicular to the bond path at the (3, — 1) critical point, the gradient vectors
terminate as illustrated for the two-dimensional case in Fig. 6.7.

6.2.2 The Surface of Zero Flux

The points at which the nuclei are located are attractors of the gradient vectors
of the electron distribution. The region containing all gradient paths terminating
at the attractor defines a basin which is associated with the nucleus. Any gradient
path originating in the basin terminates at the attractor. The space of the
distribution is thus partitioned into regions which each contain one attractor. They
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(b)

FIG. 6.8 (a) Gradient vector field of the charge density in the plane of the ethylene molecule.
Each line represents a trajectory of Vp(r). Trajectories which terminate at the positions of
the nuclei and trajectories which terminate and originate at the (3, — 1) critical point in
the charge distribution are shown. The full circles indicate the positions of the (3, — 1)
critical points. Heavy lines represent the gradient paths originating at the (3, — 1) critical
points and defining the bond paths. (b) A superposition of the trajectories associated with
the (3, — 1) critical points on a contour map of the charge density. Source: Bader et al. (1981).

are defined as the atomic basins. This is illustrated in Fig. 6.8 for the ethylene
molecule. The boundaries of the basins are never crossed by a gradient vector.
Thus, if at each point the normal of the surface is given by n(r), the total boundary
surface of the basin Q is defined by

Vo(r)-n(r) = 0 (6.21)
Since the surface is not crossed by any gradient lines, it is referred to as the surface
of zero flux. As further discussed below, the virial theorem is satisfied for each of
the regions of space satisfying the zero-flux boundary condition.
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TABLE 6.3 Atomic Charges (lel) in Urea Based on Theoretical MP2 (Meller—Plesset 2)
and HFS (Hartree-Fock-Slater) Densities, According to Different Partitioning Methods

Method/Basis Set Mulliken Lowdin Hirshfeld Bader
MP2/6-31G** C 0.810 0.195 0.175 2.188
(¢} —0.567 —0.349 —0.343 —1.270
N —0.735 —0.320 —0.166 —1.356
HI 0.320 0.209 0.130 0.468
H2 0.294 0.189 0.120 0.429
HFS/TZD C 0.771 0.183 1.590
(0] —0.602 —0.318 —1.061
N -0.106 -0.200 —1.090
Hi 0.021 0.139 0.429
H2 0.001 0.128 0.397

Source: Velders 1992.

Though rare, there are cases in which the total density shows minor maxima
at non-nuclear positions. As all (3, — 3) critical points are attractors of the gradient
field, basins occur which do not contain an atomic nucleus. These non-nuclear
basins (which have been found in Si—Si bonds® in Li metal, and some other cases,
distinguish the zero-flux partitioning from other space partitioning methods.

Velders has compared the integrated atomic charges obtained by Bader
partitioning of a number of theoretical densities to those obtained by the
stockholder definition and the theoretical Mulliken and Lewdin partitioning
schemes (Velders 1992). In agreement with other studies (Bachrach and Streitweiser
1989), it is found that the Bader charges tend to be much larger than those from
other space partitioning methods, as illustrated in Table 6.3 for the urea molecule.
Since the center of gravity of the electrons in the nuclear basins does not coincide
with the nuclear position, local atomic dipole moments from the Bader partitioning
are quite large, and counteract the molecular dipole moment based solely on the
net charges. The total dipole moment of an isolated molecule is, of course,
unambiguous, and not dependent on the partitioning scheme.

6.3 Chemical Bonding and the Topology of the Total Electron
Density Distribution

6.3.1 The Laplacian of the Electron Density

An important function of the electron density is its Laplacian, defined as
V2p(r) = 3%p(r)/ox? + 3%p(r)/dy* + 6%p(r)/0z* (6.22)

The Laplacian is invariant under a rotation of the coordinate system, and is
equal to the trace of the Hessian matrix H(r) with elements ¢%p/Cx; éx;. The

! There are indications that the appearance of non-nuclear attractors in silicon is basis-set dependent.
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Laplacian is related to the electronic energy density E(r) of the charge distribution,

defined as
E(r) = G(r) + V(r) (6.23)

In this equation, V(r) is the potential energy, including exchange, at the point r.
The term G(r) is a local one-electron kinetic energy density, defined as the scalar
product of the gradient of the wave function and the gradient of the complex
conjugate of the wave function, or (using atomic units) (Bader 1990, p. 147)

G(r) = in Vy(r)* - Vi(r) (6.24)

where n is the number of electrons.
For a basin Q defined by the surface of zero flux, and therefore implicitly also
for the whole system, integration over G(r) gives the kinetic energy K, defined by

= — IV (6.25)

The proof that In G(r) dr = K(Q) can be found in work by Bader (1990, p. 148)
and Velders (1992, p. 22).
It is common to illustrate the Laplacian by the function L(r), defined as

L(r) = —(A2/4m)V2p(r) (6.26a)
or, in atomic units,
L(r) = —1V2p(r) (6.26b)

The relation between L(r) and the components of the local energy density E(r)
is given by the equation

— L(r) = (F*/4m)V?p(r) = 2G(r) + V(r) (6.27)

As noted by Bader, this expression is unique in relating a property of the electronic
charge density to the local components of the total energy.

It is important that L(r) vanishes when the integration is performed over the
zero-flux surface atomic basin. This is because the integral over L(r) can be replaced
by the surface integral over the flux at the surface (Bader 1990):

L(Q) = j L(r) = (h2/4m)j Vip(r) dr
Q Q

= —(h*/4m) Vo(r) - n(r) dS(Q, r) = 0 (6.28)
surface, Q

in which Q describes the atomic basin.
Since L(Q) vanishes, 2E,;,(Q) = — E,(Q), and the virial theorem

2Ein = —Epu (6.29)

which is valid for the whole system, is equally obeyed for the atomic basins defined
by the zero-flux surface. This is a crucial feature of the virial partitioning discovered
by Bader.

As a consequence of Eq. (6.27), the sign of the Laplacian at a point determines
whether the negative potential energy or the positive kinetic energy is in excess of
the virial ratio | E, |/| E\;,| = 2 at that point. In negative regions of the Laplacian



136 X-ray Charge Densities and Chemical Bonding

[L(r) positive], the potential energy dominates the local electronic energy and
the local contribution to the virial theorem [Eq. (6.29)]. Conversely, where the
Laplacian is positive, the kinetic energy dominates the virial contribution. At the
{3, —3) critical points, all curvatures are negative, so the sign of the Laplacian is
negative [L(r) is positive}, and the potential energy dominates. This is the result
of the importance of the electron-nuclear attractions in the regions very close to
the nuclei. The spike at the nuclear position in L(r) (Fig. 6.9) is surrounded by a
pronounced hole, representing an area where the positive kinetic energy is dominant.

in general, in regions of space where the Laplacian is negative, the electronic
charge is concentrated as the negative eigenvalues of the Hessian represent density
accumulation. Thus, a plot of L(r) shows maxima in regions of density accumulation
and minima in regions of depletion.

Relief maps of the charge density and L(r) in the plane of the water molecule
are shown in Fig. 6.9. The L(r) at the bond critical point shows an accumulation
in the internuclear surface. This is due to the shared electrostatic attraction of the
electrons by both nuclei. Such a shared interaction is typical for covalent bonds.

6.3.2 Classification of Bonds Based on the Topology
of the Electron Density

At the (3, —1) critical points, the charge density along the bond paths connecting
bonded atoms attains its minimum, but it is a maximum in the internuclear
surfaces containing the (3, — 1) critical points. Accordingly, the principal curvature
along a bond path, designated 45, is positive, while the remaining two, 4, and 4,,
are negative. In the plane of 4, and 4,, density is concentrated at the critical point,
while density is depleted in the bond path direction.

The value of the density at the critical point p,, the values of the curvature,
and the asymmetry of the curvature provide the information for a density-based
classification of chemical bonding. Several parameters are used to classify a bond:

1. Bond order

The bond order is defined by the value of the charge density at the bond critical
point p,. The value of p, increases with the number of assumed electron pair
bonds, leading for specific bond types to relations of the form

n = exp [A(p, — B)] (6.30)

where n is the bond order, and the coefficients 4 and B are constants specific
for each bond type. For carbon—carbon bond, for example, B is set to the p, value
for ethane, and A is chosen such as to give a bond order of 2 for ethylene, or 3 for
acetylene.

2. The value of V2p at the Bond Critical Point

For closed-shell interactions, there will be no density accumulation in the bond.
This means a deep minimum along the path connecting the nuclei, that is, a
positive value of /3, and no contraction perpendicular to the bond and thus no
strongly negative values of 4, and 4,. Consequently, a positive value of V?p is
typical for a closed-shell interaction.
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(b)

F1G. 6.9 Relief maps for (a) p and (b) —V?2p for the plane of the water molecule. There
are spike-like maxima in both functions at the oxygen nucleus (terminated at arbitrary
values) and in —V?p at the hydrogen positions. The valence shell of charge concentration
(VSCC) of oxygen in the —V?p map exhibits maxima and saddle points in the two-
dimensional relief maps. In addition, there are two local maxima, one along each bond
path to a proton. Source: Bader (1990).

For the covalent bonds in the diatomic molecules studied by Bader and Essén
(1984), values of 4, and 4, vary from —25 to —45 eA 5, while 4, is positive in
the range of 0-45eA~°. The sum of the curvatures, V2p, is invariably negative,
indicating the concentration of electron density in the internuclear region. But for
second-row atoms, the larger positive value of A, may dominate the Laplacian.
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For the Si—O bonds in silicates, for example, V2p is as large as +20 eA ~° (chapter
11), though the bond clearly has appreciable covalent character as the charge
density is contracted in the plane perpendicular to the bond path.

Closed-shell interactions occur between ions in ionic crystals and between
atoms in adjacent molecules in molecular crystals. For X—H---Y hydrogen
bonds, the X—H interaction is covalent, but the H---Y region in normal
hydrogen bonds shows a small value of p, and a positive value of V?p, typical for
a closed-shell interaction. The value of V2p in the O- - -H region of (H,0),, for
example, is found to be 0.42 eA ~% (Bader 1990, p. 292). For the stronger hydrogen
bond in (HF),, the value is 0.81 eA % indicating again an absence of covalency.
Recent experimental studies, however, indicate a covalent interaction for very short
hydrogen bonds, as discussed in chapter 12.

3. The ratio |4,]/4;

The quantity {4,|/4,, that is, the ratio between the largest perpendicular contrac-
tion at the (3, — 1) critical point and the parallel concentration towards the nuclei,
is <1 for closed-shell interactions. For shared interactions, its value increases with
bond strength and decreasing ionicity of a bond. It decreases, for example, in the
sequence ethylene (4.31), benzene (2.64), ethane (1.63).

4. The ellipticity ¢ of a bond
The ellipticity of a bond is defined as

g=A /A, — 1 (6.31)

As A, represents the contraction of the density perpendicular to the bond path, ¢
is >0. For a cylindrically symmetric ¢ bond, the ellipticity will be zero, while it
is different from zero for double bonds which have a n contribution.

The validy of ¢ in classifying bonds is borne out by the analysis of theoretical
densities; the ellipticity of the C—C bonds in the series ethane, benzene, ethylene
increases from 0.0 to 0.23 to 0.45 (Bader et al. 1983). For the very long bridgehead
bonds in propeilanes, which are shared by three rings, the ellipticity can be quite
large, as in [2.1.1] propellane,

[2.1.1] propellane A

for which a value of 7.21 has been reported (Bader and Laidig 1991). In such bonds,
the density at the bond critical point is low and the curvature along the direction
connecting the threc-membered-ring nuclear attractors is very small. Such bonds
are quite likely to rupture, leading to ring opening. The (3, —1) critical point in
the bridgehead bonds distinguishes the cyclopropellanes from bicyclic molecules
like bicyclopentane and bicyclooctane. As pointed out by Bader and Laidig (1991),
the topological analysis of the total density in these bonds has marked advantages
over examination of the deformation density, because, in the latter, the density
subtracted at the midpoint depends very much on the distance between the
proximal atoms.

Since the Laplacian is a second-derivative function, it is very sensitive to small
changes in the density. Quantitative results are basis-set dependent, and
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convergence requires an extensive basis set (Gatti et al. 1992; R. Destro, private
communication).

6.3.3 Topological Analysis of Experimental Densities

Topological analysis of the total density has a considerable advantage over the
use of the deformation densities in that it is reference-density independent. There
is no need to define hybridized atoms to analyze the nature of covalent bonding,
and the ambiguity when using the standard deformation density, noted above in
the discussion on propellanes, does not occur.

For analysis of experimental results, the static model density must be used to
eliminate noise, truncation effects, and thermal smearing. Some caution is calied
for, because the reciprocal space representation of the Laplacian is a function of
F(H)- H?, and thus has poor convergence properties.? This difficulty is only partly
circumvented by use of the model density, as high-resolution detail may be quite
dependent on the nature of the model functions, as is evident in the experimental
study of the quartz polymorph coesite discussed in chapter 11.

The topological analysis is especially informative in the comparison of related
molecules and solids. Results for a number of related bonds in the amino acids
L-alanine (Gatti et al. 1992) and L-dopa (dihydroxyphenylaianine, Fig. 6.10)
(Howard et al. 1995), based on data at 23 K and 173 K, respectively, are compared
in Table 6.4. We note quite good agreement between the experiments for p,, the
electron density at the bond critical points. But the experimental values tend to
be 10-20% higher than the theoretical values. Howard et al. (1995), in the study on
L-dopa, performed a multipole refinement on theoretical structure factors, and
found that in the corresponding model density the p, values were systematically
larger than those from the exact density. This suggests an inadequacy in the
multipole model that requires further investigation.

The values of the Laplacian V2p, and its components 4, , ; obtained in the

H
Ph ' H o)
C
\on /
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H

FIG. 6.10 Schematic drawing of the amino acids p-dopa and tr-alanine. For L-dopa,
Ph = 3,4-dihydroxyphenyl; for L-alanine, Ph = H.

* See Table 8.1 for the dependence of derived properties on the power of the magnitude of scattering
vector H.
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TABLE 6.4 Ab-initio RHF (Restricted Hartree—Fock) Bond Critical Point Properties for
Corresponding Bonds between C, N, and O in the L-Dopa and L-Alanine Zwitterionic
Monomers at the X-ray Experimental Geometry

Bond
(x—y) Method R R, Do V3p, i 2, A3 €
C,—0, Exp.* 1.251 0.602 270 —326 -283 —22.6 184 0.25
Exp.? 1.248 0.517 3.02 -390 -314 —264 18.8 0.19
JAM®® 1.248 0.447 2.05 24 —10.8 —10.6 23.8 0.02
6-31G**® 0.405 2.63 —1.8 —26.1 —24.6 49.0 0.06
C,—0, Exp.* 1.260 0.646 2.64 —38.8 ~28.2 —22.6 12.1 0.25
Exp.? 1.267 0.540 2.86 —-295 —-27.6 —244 225 0.13
IAM® 1.268 0.463 1.99 -08 -10.3 —10.1 19.6 0.02
6-31G**> 0.413 2.57 —8.38 —249 —-229 393 0.08
C,—C, Exp? 153 0508 171  —120  —125 —11.0 114 014
Exp.t 1.535 0.779 1.76 —-109 —13.5 —11.2 13.8 0.21
IAM® 1.533 0.767 0.12 1.3 —53 —-51 11.7 0.04
6-31G**® 0.697 1.78 —18.7 —13.3 —12.6 7.24 0.06
C,—C, Exp.* 1.340 0.510 179 —13.1 —13.2 —114 11.5 0.16
Exp.? 1.526 0.779 1.67 —10.1 —11.5 —11.1 12,5 0.04
IAMP 1.526 0.763 1.18 1.1 —53 —53 11.7 0.00
6-31G**® 0.797 1.74 —16.7 - 120 ~11.8 7.24 0.04
C,—N Exp.® 1.495 0.904 1.62 —84 —12.7 —8.6 129 047
Exp. 1.488 0.635 1.70 —11.0 —13.9 -10.7 13.6 0.30
IAMP 1.494 0.680 1.35 32 —6.7 —6.7 16.6 0.00
6-31G**® 0.464 1.53 -2.7 —8.5 —-175 13.5 0.14

R: bond length; R,: distance of bond critical point from first atom; p, density at bond critical point. Units are A,
eA 3, and eA 3, respectively.

Exp., Experimental.

* .-dopa.

b i -alanine.

¢IAM = Independent Atom Model.

Source: Gatti et al. (1992), Howard et al. (1995).

two experiments are in remarkable qualitative agreement. But we note the
pronounced discrepancies between theoretical and experimental values for the
second derivatives. This is especially evident for Vp,, but also for its components.
The agreement among the experiments for the position of the critical point along
the bond path, described by the distance R, of the point from the first atom, is
not that satisfactory, perhaps due to differences between the basis functions used
in the two analyses.

The promolecule density shows (3, — 1) critical points along the bond paths,
just like the molecule density. But, as the promolecule is hypothetical and violates
the exclusion principle, it would be incorrect to infer that the atoms in the
promolecule are chemically bonded. In a series of topological analyses, Stewart
(1991) has compared the model densities and promolecule densities of urea,
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benzene, imidazole, and 9-methyladenine. It is found that the critical points of the
promolecule density are generally close to those of the experimental molecular
density. As may be expected, the true density at the critical point in the covalent
bonds is higher (by about 50% for C—C bonds), and the Laplacian is much more
negative than for the promolecule density. The ellipticity of the bonds is essentially
zero for the density consisting of a superposition of spherical atoms.



7

The Electrostatic Moments of a
Charge Distribution

The moments of a charge distribution provide a concise summary of the nature
of that distribution. They are suitable for quantitative comparison of experimental
charge densities with theoretical results. As many of the moments can be obtained
by spectroscopic and dielectric methods, the comparison between techniques can
serve as a calibration of experimental and theoretical charge densities. Conversely,
since the full charge density is not accessible by the other experimental methods,
the comparison provides an interpretation of the results of the complementary
physical techniques. The electrostatic moments are of practical importance, as they
occur in the expressions for intermolecular interactions and the lattice energies of
crystals.

The first electrostatic moment from X-rays was obtained by Stewart (1970),
who calculated the dipole moment of uracil from the least-squares valence-shell
populations of each of the constituent atoms of the molecule. Stewart’s value of
4.0 + 1.3 D had a large experimental uncertainty, but is nevertheless close to the
later result of 4.16 + 0.4 D (Kulakowska et al. 1974), obtained from capacitance
measurements of a solution in dioxane. The diffraction method has the advantage
that it gives not only the magnitude but also the direction of the dipole moment.
Gas-phase microwave measurements are also capable of providing all three
components of the dipole moment, but only the magnitude is obtained from
dielectric solution measurements.

We will use an example as illustration. The dipole moment vector for
formamide has been determined both by diffraction and microwave spectroscopy.
As the diffraction experiment measures a continuous charge distribution, the
moments derived are defined in terms of the method used for space partitioning,
and are not necessarily equal. Nevertheless, the results from different techniques
(Fig. 7.1) agree quite well.

A comprehensive review on molecular electric moments from X-ray diffraction

142
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0
H

H H 3 2

FIG. 7.1 Direction and magnitude of the dipole moment of formamide from various
methods; the origin is at the center of mass of the molecule. (1) X-ray spherical atom. (2)
X-ray aspherical atom. (3) Theory, double {. (4) Theory, extended basis. (5) Microwave
(Coppens et al. 1979). For numerical information see Table 7.2.

data has been published by Spackman (1992). Spackman points out that despite
a large number of determinations of molecular dipole moments and a few
determinations of molecular quadrupole moments, it is not yet widely accepted
that diffraction methods lead to valid experimental values of the electrostatic
moments. This is quite unwarranted, as is clear from examination of the rapidly
increasing number of diffraction results, summarized at the end of this chapter.

7.1 Moments of a Charge Distribution
7.1.1 Definitions

Use of the expectation value expression
0> = f Op(r) dr (6.5)
Vi

with the operator O = FaFastay - - - Tny» BiVEs for the electrostatic moments of a
charge distribution p(r)

Hayaras...ar = f p(r)ranrazrn s Ty dr (7.1
Vr

in which the r, terms are the three components of the vector r (x; = 1, 2, 3), and
the integral is over the volume Vi of the distribution.

For ! = 0, Eq. (7.1) simply represents the integral over the charge distribution,
which is the total charge—a scalar function described as the monopole. The higher
moments are, in ascending order of . the dipole, a vector; the quadrupole, a
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second-rank tensor; and the octupole, a third-rank tensor. Successively higher
moments are named the hexadecapole (I = 4), the triacontadipole (I = 5), and the
hexacontatetrapole (I = 6).

Whiie the monopole represents the total charge, the higher poles are a measure
of the charge separation. Two opposite charges of one electron unit must be
separated by 1 A to give a dipole moment of 4.803 D [1 Debye = 1078 esu =
3.3356-107*° Cm (Cm = coulomb meter); see Appendix K]. Thus, long molecules
may have large dipole moments, especially when they carry groups of opposite
polarity at their extremes. The dipeptide glycylglycine, for example, has a
zwitterionic structure with NH3 and COO™ groups at the two ends of its
backbone. The moment derived from X-ray data is 24 D, compared with =27 D
for the dipole moment in solution (Sakellaridis and Karageorgopolous 1974,
Coppens et al. 1979). Similarly, large quadrupole moments occur for molecules
with strongly polar, well-separated groups (see Table 7.3).

The moments defined by Eq. (7.1) are referred to as the unabridged moments.
For moments with | > 2, an alternative, traceless definition is often used. In the
traceless definition, the quadrupole moment ®,; is given by

Oy = 1 fp(r)ﬁrarg = r?d,dr (7.22)

where 6, is the Kronecker delta function. The term | p(r)r? dr, which is subtracted
from the diagonal elements of the tensor, corresponds to the spherically averaged
second moment of the distribution.

The corresponding expression for the octupole moments is

Q=13 Jp(r)[Srarﬂry — r¥(r,0;, + 130y, + 1,0,5)] dr (7.2b)

Expressions (7.2a) and (7.2b) follow from the following general expression for
the /th-rank traceless tensor elements:

(— 1) J o <1>
MO =7 P - |d "
ayxy ... n p(l‘)r 3"a, or, ... ara, r ‘ ( )

az

Though the traceless moments can be derived from the unabridged moments,
the converse is not the case because the information on the spherically averaged
moments is no longer contained in the traceless moments. The general relations
between the traceless moments and the unabridged moments follow from Eq. (7.3).

For the quadrupole moments, we obtain with Eq. (7.2):

O = Fthex — 3(lax + My + Moz) = fox — 3y + s2) (7.4a)

and
O, = sy (7.4b)
Expressions for the other elements of the traceless quadrupole tensor are obtained

by simple permutation of the indices.
For a site of point symmetry 1, the electrostatic moment g,, ., ..., Of order
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I has (I + 1)(! + 2)/2 unique elements. In the traceless definition, the number of
independent elements is smaller, because the trace of the tensor has been set to
zero. The number of independent elements then is equal to 2/ + 1, that is, equal
to the number of spherical harmonic functions of order /, to which the traceless
moments are related, as discussed in section 7.2.1.

In a different form, the traceless moment operators can be written as the
Cartesian spherical harmonics c,,, multiplied by r!, which defines the spherical
harmonic electrostatic moments:

Oppp = Jp(r)c,mpr’ dr (7.5)

The factor r' enters because the Cartesian spherical harmonics c,,,, are defined
in terms of the direction cosines in a Cartesian coordinate system. The expressions
for ¢, are listed in appendix D. As an example, the c,,,, functions have the form
3z2 — 1, xz, yz, (x? — y?)/2 and xy, where x, y and z are the direction cosines of the
radial vector from the origin to a point in space.

The linear relationships between the traceless moments ©,, and the spherical
harmonic moments ©,,,, are obtained by use of the definitions of the functions
Cimp- For example, for the quadrupolar moment element ©,,, we obtain the
equality (3x% — 1)/2 = a{(x* — y?)/2} + b(3z2 — 1). Solution for a and b for this
and corresponding equations for the other moments leads to

¢
®xx = %(392” - %G)zo)

0,, = 3H(~30,,, —309,)

O, =30,

0,,=30,,_

9, = 30,5, (7.6)

The moments discussed in this chapter are sometimes referred to as the outer
moments of the distribution, in contrast to the inner moments for which the powers
of r in the operator 0 in Eq. (6.5) are negative. The electric field at the nucleus
and the field gradient at the nucleus are examples of inner moments, which will
be discussed in chapter 8.

7.1.2 The Origin Dependence of the Electrostatic
Moments

With the exception of the charge, the values of the multipole moments, in general,
depend on the choice of origin. Let us consider a shift of the origin by R
(R,, Rg, R,), as depicted in Fig. 7.2. Substitution of r, =r, — R, in Eq. (7.1)
corresponds to a shift of origin by R,, with components X, Y, Z in the original
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FIG. 7.2 The coordinates of a point i relative to a new
origin O at distance R from O.

coordinate system. For the x component of the first moment,

,1;=Jp(r)(x-X)dr=ux—XJp(r)dr=ux~Xq (7.7)

Similar algebra shows that the expressions for the transformed first and second
moments are

P =ty — qX; py =, —qY; p, =y, — qZ
/’lz/m = MHay — 21uaRa + qu
Hip = Hap — HaRp — HsR, + qR, R, (7.8)

For the traceless quadrupole moments, the corresponding equations are
similarly obtained by substitution of r, =v, — R, and r =r — R into Eq. (7.2),
which gives

3
®;ﬂ = G)x[} + %(3R1R/} - Rzémﬂ)q - %(Rﬂ#zx + Ra:u[}) + Z (Ry.uy)éaﬂ (79)
v=1

The analogous expressions for the higher moments are reported in the literature
(Buckingham 1970).

Expressions (7.8) and (7.9) demonstrate  that the first nonvanishing moment
is origin independent. Thus, the dipole moment of a neutral molecule, but not
that of an ion, is independent of origin; the quadrupole moment of a neutral
molecule without dipole moment is not dependent on the choice of origin, and
SO on.

An element of an electrostatic moment tensor can only be nonzero if the
distribution has a component of the same symmetry as the corresponding operator.
In other words, the integrand in Eq. (7.1) must have a component that is invariant
under the symmetry operations of the distribution, namely, it is totally symmetric
with respect to the operations of the point group of the distribution. As an example,
for the x component of the dipole moment to be nonzero, p(r)x must have a
totally symmetric component, which will be the case if p(r) has a component with
the symmetry of x. The symmetry restrictions of the spherical electrostatic
moments are those of the spherical harmonics given in appendix section D.4.
Restrictions for the other definitions follow directly from those listed in this
appendix.
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7.2 Electrostatic Moments from Diffraction Data

7.2.1 Atomic Electrostatic Moments in Terms of the
Parameters of the Multipole Formalism

The atomic electrostatic moments of an atom are obtained by integration over its
charge distribution. As the multipole formalism separates the charge distribution
into pseudoatoms, the atomic moments are well defined.

The total charge distribution of atom i consists of the sum of the nuclear
and electronic distributions pyg,) () = Poycicar,i — Pe,i- 1The electrostatic moments
follow

p’al.az.ag...a: = ~[‘ploml‘i(r)raurazrau Fa ay dr (710)

If the moments are referred to the nuclear position, only the electronic part
of the charge distribution contributes to the integral. According to the multipole
formalism of Eq. (3.32),

pe l(r) | cp: core(r) + K?pi valence(K‘r)

+ Z K; 3R1 l(K r) Z Z Pt Imp dlmp(g d)) (71 1)
m=0 p
with p = + when m > 0, and R, /(xir) representing the radial dependence of the
spherical harmonic deformation functions on atom i.
Substitution in Eq. (7.10) gives, for the jth moment of the atomic density with
respect to the nuclear position,

Hj = u'al,az.rzg...aj = _f[ﬂ,cpcurc(r) + Pi,vkipi.valence(xir)

Imax
+ Z K; 3R1 l(K r) Z z Pl imp dlmp(g ¢)] 11 az . razj dl'
m=0 p
(7.12)

in which the minus sign arises because of the negative charge of the electrons.

The spherical terms of the charge distribution contribute only to the diagonal
elements of the even moments. Evaluation of these contributions is further
discussed in section 7.2.3. For the higher-order terms in the summation, we have,
using the symbol éj for the jth moment operator:

Tmax !
W= —x? féj y [ > Y P, d,,,,,,R,] dr (7.13)
1=1 L. m=0 p
where, as before, p = +. The requirement that the integrand be totally symmetric
means that only the dipolar terms in the multipole expansion contribute to the
dipole moment. In the traceless definitions, this is equally true for all higher
moments; for example, only the quadrupolar terms of the multipole expansion will
contribute to the quadrupole moment. In general, for the traceless definition, the
[th-order multipoles are the sole contributors to the Ith moments. Accordingly,
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because of the orthogonality of the spherical harmonics, for 0 = Cimpt! the sole
contributor to the integral of Eq. (7.13) is the density function d,.,,, for which
=1, m=m, and p = p’, or, for the spherical harmonic quadrupole moments

G)l""l’ = I)lmp Jélmp[dlmpRl] dr (7 14)

Substituting

(Kfé')n(l)+ 3

g r"exp (—k'(r)

{

and Oy,, = ¢,,,,+', and subsequent integration over r gives

_p L a1+ 1
{imp (Krc)l (n([) + 2)' Dllim

Oy = J yi,sin8dody  (7.15)

where the definitions (chapter 3 and appendix D)
dlmp = leclmp = (le/Mlm)ylmp = (Dlm)_ lylm’ and clmp = (I/Mlm)ylmp (716)

have been used.
Since the y,,,, functions are wave-function normalized, we get

B 1T (n(h+1+2) L,
PO (n(l) + 2! (M,,)?

G)lmp =

L("(l) +1+2) 1
PO (D) + 2! Dy M,

(7.17)

Application to dipolar terms with n(l) = 2, L,,,, = 1/r, and M,,, = (3n)"/%, and
D,, = M,,/L,, (Fig. 3.5), gives the x component of the atomic dipole moment as

20

mpm (7.18)

He = _fP11+d11+R1Xdr= -

For the atomic quadrupole moments in the spherical definition, we obtain
directly, using n(l) = 2, I = 2 in Eq. (7.17):

30 L 36./3
20 _p ion (7.19)

2T WD My)? T T (0P
and for the other elements

30 Ly, 6n

2mp = T o2 san 2 izmp = T3 2mp 7.20
(1) (My,)? ° ®0?* (720

As the traceless quadrupole moments are linear combinations of the spherical
harmonic quadrupole moments, the corresponding expressions follow directly
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from Egs. (7.19)-(7.20) and (7.6). We obtain, for n(2) = 2,
6. — 183

oW

0, =+ P C)Z(\/—P20+nP22+)

Ou =+ 4)2 (V3P — 7Py5 )

o, = —(%g—z Py, (7.21)

and analogously for the other off-diagonal elements. Thus, the atomic electrostatic
moments are simple functions of the parameters of the muitipole formalism.

7.2.2 Molecular Moments as a Sum Over the
Pseudoatom Moments

In the multipole-model description, the charge density is a sum of atom-centered
density functions. The moments of the entire distribution are obtained as the sum
over the individual atomic moments plus contributions due to the shift to a
common origin.

If individual atomic coordinate systems are used, as is common when chemical
constraints are applied in the least-squares refinement, they must first be rotated
to have a common orientation. The transformation of the population parameters
under coordinate-system rotation is described in section D.5 of appendix D
(Cromer et al. 1976, Su 1993, Su and Coppens 1994).

The transition to a common coordinate origin requires use of the origin-shift

expressions (7.7)~(7.9), with R = —r,; for an atom at r;. The first three moments
summed over the atoms i located at r; become
Gioiar = 2. i (1.22)
Piotar = Z i+ 3 N (7.23)
and
Hap, total = Zl: (Mapi + Toillai + Paillpi + Fail'pid:) (7.24)

with a, f = x, y, z. Analogous expressions for the traceless components @, follow
directly from Eq. (7.9).

7.2.3 The Electrostatic Moments of the Deformation
Density

When the electrostatic moments are to be obtained by integration over direct
space, it is advantageous to use the deformation density rather than the total
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density in order to reduce truncation effects. It is therefore important to analyze
the relation between the moments of the two distributions.

As noted above, in the traceless definition the /th-order multipoles are the
sole contributors to the [th electrostatic moments. This implies that the traceless
moments derived from the total density p(r) and from the deformation density
Ap(r) are identical, that is, @,,,(p) = ©,,,(Ap) for | > 2.

In the nonzero trace definition, this equality is no longer valid. To illustrate
the relation for the diagonal elements of the second-moment tensor, we rewrite
the xx element as

.uxx(ptotal) = J‘pxz dl' = J‘ppmmoleculex2 dl' + JAPXZ dl' (725)

The promolecule is the sum over spherical atom densities, so we may write

~j'ppromoleculex2 dr = jz pi.spherical ammx2 dr = Z J‘pi,sphericalalomx2 dr (726)

If R; = (X}, Y, Z;) is the position vector for atom i, the contribution of this atom
can be written as

— 2 — 2
/li,xx,sphericalalom - J‘pi‘sphericalatomx dr = J‘pi.spherical a(om(x - Xl) dr

+ Xi J‘zpi,sphericalalom(x - Xl) dl' + th fpi, spherical atom dl’
(7.27a)

Since the last two integrals are proportional to the atomic dipole moment
and its net charge, respectively, they will be zero for neutral spherical atoms, or

Aui.xx.sphericalalom = J‘pi,spherical alom(x - Xi)2 dl' (727b)

With {(x — X;)*> = §{r?>, {r?> = | pi(r)r? dr, we obtain for the promolecule

atoms

Jppromoleculexz dl' = % Z <r2>spherical atom (728)
and, by substitution in Eq. (7.29),

:uxx(ptol) = /'t,\x(Ap) + Zli Z <r2>sphcricalalom (729&)

atoms

in which the second moment of the molecular deformation density is equal to

Hex(Dp) = Y (jAP.'XZ dr + 2X;p. + X?Qi) (7.29b)

1

with u; and ¢; being the atomic dipole moment and the charge on atom |,

respectively.
The right-hand side of Eq. (7.28) can be derived readily from analytical
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expressions for the atomic wave functions. Results for Hartree-Fock wave
functions have been tabulated by Boyd (1977). Since the off-diagonal elements of
the second-moment tensor vanish for the spherical atom, the second term in Eq.
(7.29a) disappears for the off-diagonal elements, and therefore the off-diagonal
elements are identical for the total and deformation densities.

The relation between the second moments ,; of the deformation density and
the traceless moments ©,,; can be illustrated as follows. From Eq. (7.2a), we may
write

O,4(8p) = $,g(Ap) — 30, j Apr? dx (7.30)

Only the spherical and dipolar density terms contribute to the integral on the
right. Assuming, for simplicity, that the deformation is represented by the valence-
shell distortion (i.e., the second monopole in the aspherical atom expansion is not
used), we have, with density functions p normalized to 1, for each atom:

(AP)Spherical = K3Pvalencepvalence(Kr) - P?alencepvalence(r) (731)

and

JA/N’Z dl‘ = J‘Z (K?})i,valencepi.valence(’cir) - Pio,valencepi,valence(r))rz dl'

2 0 2
= Z [(Pl valence/Ki - Pi,valence)<ri >sphericalvalence shell
i

+ Riz(Pi,valence - Pl('),valence)] (732)

The second term occurs because the integral X? [ p; onericatatom ¥ in Eq.
(7.27a) is no longer zero for the non-neutral atom. Substitution of Eq. (7.32) into
Eq. (7.30) gives the required relation between ©,,(Ap) and p,4(Ap).

7.2.4 Electrostatic Moments of a Subvolume of Space
by Fourier Summation

When space is partitioned with discrete boundaries, as in Eq. (6.7) and in the
Bader virial partitioning method, the moments can be derived directly from the
structure factors by a modified Fourier summation, as described for the net charge
in chapter 6.

For the moments of the distribution within the volume element V., expression
(7.1) gives

Hayar. ..o = J Tar,a0.. 0, P(F) dr (7.33)
Vr

With §, e ey = TeFaslay - - - Ty

Replacing p(r) by the Fourier summation over the structure factors, we obtain
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for the /th moment:

w(vy) = Il/_[ %), F(H) exp (—2ziH r) dr = lZF(H)f 9, exp (—2miH r) dr
Vr H VH Vr
(7.34)

which is equivalent to Eq. (6.8).

In the case of the net charge, the integral becomes j'VT exp (—2niH-r) dr, which
is the shape transform S; of the volume F; described in chapter 6. For higher
moments, the volume integrals are given by S% = jyr P, exp (—2niH-r) dr. Because
the operator y contains the position vector, the integrals are no longer identical
for different volumes of integration, even though their shapes may be identical.

For complicated volumes of integration, the parallelepiped divisioning can
again be used. We write

W) = :/ T F(H)Y { j [9.(r) exp 2niH(r — r,) dr] exp (2m'H-r,.)} (7.35)
H i vi

in which v, is the subunit volume.
As before, we write

w(Vr) = ,1,2 F(H)S7(H)
with
St = Z stexp 2niH 1,
and l

siH) = J 9,(r) exp 2aiH (r — r;) dr (6.13)
and analogously for the deformation density:
1
#(Vr) = I—/Z AF(H)S7(H) (7.36)

For identical volumes of integration, s}(H) can be written as the sum of a
position-independent and a position-dependent term. When y is the dipole-
moment operator, this is accomplished as follows.

For the dipole moments,

M =r=(@—-r)+r (7.37)
Substitution in Eq. (6.13) gives

s{(H) = J (r —r)exp2niH-(r — 1) dr + rif exp 2aiH-(r — r;) dr

= sp(H) + r,-J exp 2niH (r — r;) dr (7.38)

vi

in which s}{(H) is no longer dependent on the position of the integration volume.
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TABLE 7.1 Expressions for the Shape Factors sy(H) for a Parallelepiped with Edges 26,,
24, and 26,

4 Property sh(H)
1 Charge ViJo(2mnH,6,)jo(2nHy6p) jo(2nH,6,)
1, Dipole #, —iVyé,j,2nH,0,)
Jo(2mH,3,)jo(2nH,8.)

Fatp Second-moment —V3,0,j,(2rnH,6,)j,
i,p off-diagonal (2mHpd )Y jo(2nH,8,)

j,(2nH,d
oty Second-moment Vréf{i‘(—:'—# -jO(ZnH,é,)}
n a~a
i, diagonal “Jo(2mHpdy) jo(2nH,0,)

Terms j, and j, are the zero- and first-order spherical Bessel functions: jo(x) = (sin x)/x, j,(x) = (sin x)/x? — (cos x)/x;
Vr is the volume of the parallelepiped.
Source: Moss and Coppens (1981).

With Eq. (7.35) we obtain, for the dipole moment,
W) = T (1) + ray) (7.39)

The first term in Eq. (7.39) represents the sum over the dipole moments of the
individual subunits, each referred to its own origin; the second term represents
the effect of the origin shift. As expected, Eq. (7.39) for the sum over subunit dipole
moments is identical in form to Eq. (7.23) for the sum over pseudoatom dipole
moments.

Expressions for sh(H) for | < 2 and a subvolume of parallelepipedal shape are
given in Table 7.1. Though the shape factor for the dipole moment is imaginary,
combination of the Friedel pairs F(H) and F(H) in the summation

w(Vp) = %,Z F(H)S7(H)

leads to a result that is real, as required for an observable physical property. We
obtain

= 2v6,

v Y. Y {(Asin2nH-r; + B cos 2nH 1) j,(2nH,8,) jo(2nHyd4) jo(2mH,6,)}
1/2 @
(7.40)

in which the first summation is over a hemisphere in reciprocal space and v is the
subunit volume.

As noted in chapter 6, since the spherical Bessel functions j,(x) generally
decrease with increasing x, the moments are less dependent on the high-order
reflections in a data set than the electron density itself.

Performing the summation over AF,, further reduces the possibility of series
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termination effects. It also causes the spherical-atom density of the nuclei within
the volume of integration to be assigned to that volume, whereas in the F,,,
summation the promolecule density may extend into adjacent regions.

The properties obtained by Fourier summation over AF,,. or F,,. are those
of the thermally averaged density. But because of the decreased dependence on
the high-order reflections, the effect of thermal vibrations is not pronounced,
especially for large volumes of integration. In other words, as long as a density
unit vibrates harmonically within the volume of integration, neither the charge
nor the dipole moment components will be affected.

7.2.5 Error Analysis of Diffraction Moments

The accuracy of the electrostatic moments based on the multipole parameters is
a function of the errors in both the population coefficients FP,,, and the atomic
parameters P,,,. Let M, represent the m x m variance—covariance matrix for these
parameters, as in chapter 4. Let D be the derivative matrix with elements

ou:
D,; =K (7.41)
0x;
in which y; is an element of the moment tensor, and x; is a least-squares variable.
In the atomic case, D is a 3 x m or 6 x m matrix for the first and second moments,
respectively. According to Eq. (4.31), the variances and covariances of the elements
of u are given by

M, = DM, DT (7.42)

As mentioned before, when the population parameters have been defined with
respect to local atomic coordinate systems, the moments must be transferred to a
common coordinate system for the calculation of molecular properties. The matrix
D will have to be modified accordingly. Analogous to Eq. (7.41), the elements of
D’ are given by

ou’
=K (7.43)
0x;
in which the primed quantities refer to the molecular coordinate system.
We will illustrate the equations with an example. As discussed above, the
molecular dipole moment vector is obtained from the atomic dipole moments y;
and the atomic net charges g; by

Heotal = Z u + Z Fiq; (7.23)

The atomic dipole moment is dependent on eight variables: the net charge of
the atom, derived from P, the x parameter, the atomic coordinates, and the
three population parameters P,,, P;,, and P, _. If we are interested in the error
in the magnitude of the molecular dipole moment |y,,,,|, and we omit columns of
D’ which contain only zero’s, D’ will be a 1 x 8N matrix, where N is the number of
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atoms in the molecule. To evaluate the error in |p.,|, the elements of D’ are
obtained as

D = 6“'llotalr|i (744)

J
0x;

and Eq. (7.42) gives a single number, which is the variance of |y, |-

In the case that the three components of the molecular dipole moment are to
be evaluated for subsequent calculation of its direction, D’ becomes a 3 x 8N
matrix, and the result of Eq. (7.42) is the 3 x 3 variance-covariance matrix M,
of the components.

The contribution of the errors in the positional parameters is usually much
smaller than that of the population parameters, except perhaps for the hydrogen
atom contributions.

The expression for the errors in the moments obtained by direct integration
of the density follows from Eq. (6.17):

200 = 5 ¥ SO0 LF(H)) 6.17)
or

)=, 5. S4H) o LF(H)) (7.452)
and

720) = 35 3 SO [AF ()] (7.45b)

in case the deformation density has been used. The AF values will also be
subject to errors in the structural parameters.

7.3 Discussion of Experimental Results
7.3.1 A Compilation of X-ray Electrostatic Moments

A critical discussion of molecular dipole and quadrupole moments from X-ray
diffraction data, with comprehensive coverage of the pre-1992 literature, has been
given by Spackman (1992). The numerical values from this survey are listed in
Tables 7.2-7.4. Spackman uses the units 10~ 3% Cm for the dipole moments, and
1074% Cm? for the second and quadrupole moments. They are SI units and have
a simple relation to the Debye (D) and to the Buckingham (B), which are both
based on the esu (1 D = 3.336-1073° Cm, | B = 3.336- 10~ *° Cm?; see appendix
K for conversion factors). The dipole moments listed in Table 7.2 are for neutral
species, and are therefore origin independent. The quadrupole and second
moments in Tables 7.3 and 7.4 are given with respect to the center of mass, and
coordinate axes are chosen to maximize the use of molecular symmetry. This
means that the z axis is taken along the molecular axis for linear molecules, along
the two-fold axis for molecules with C,, or D,, symmetry, and perpendicular to
the molecular plane for less symmetric planar molecules.
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TABLE 7.2 Diffraction Estimates of Dipole Moments Compared with Other
Experimental Results, Where Available, and with ab-initio Theoretical Results?

Molecule

Diffraction Results

Other Experiment
or Theory

H,0
Water

H;NO,S

Sulfamic acid (1)
H,,N;B,

Cyclotriborazene (2)
CH;N,

Cyanamide (3)

CH;NO
Formamide (4)

CH,N,O
Urea (5)

CH4N,S
Thiourea

C,H N,
2-Cyanoguanidine (6)

C,H;NO
Acetamide (7)

C,H;NO,P

Phosphorylethanol amine (8)

C,H,N,0,S

2,5-Diaza-1,6-dioxa-6a-thiapentaline (9)

CJHZNZOJ
Parabanic acid (10)

C;H N,
Imidazole (12)

C;H,NO;
L-Alanine (13)

7.7 (10) Multipole*

53 Multipole?
6.40 (17) DI-DB*

7.0 (7 Multipole*
7.2(5) Multipole®
79 (5) Multipole®

7.6-8.3 (5) Monopole®
7.0-7.6 (5) Monopole®

39-6.5 DI-DB®

8.13(3) Multipole’
6.5-8.9 Monopole®

32.7 (20) Monopole?®
33.0 (20) Multipole!!

13.7 (13) Monopole

18.5 Muitipole!?

146 (17) Monopole®
16.1 (17) Multipole®

16.5 DI-DB!®
134 DI-FB!®

18.0 (17) Multipole!®
190 (17) Multipole!?

18.0 (83) Multipole??

226 Multipole?*
375 Multipole?*
16.5 Multipole?$
43 (7 Multipole?”

7(3) Muitipole?®
44.7 Monopole’

77(10)  Multipole®®
11.7 (60) Multipole3!
15.7 (70) Muitipole??

16.0 (20) Multipole??

43.0 (23) Multipole?®

6.186 (1)/gas’
7.29/6-31G**

34.0-44.4/solution*®
29.97/6-31G**

9.0 (4)/solution!?
12.98/6-31G**

13.3-15.1/solution*®
16.26/6-31G**

12.4 (2)/gas'®
12.8 (1)/solution?’
14.18-31G**

12.8 (1)/gas?®
15.2/solution?!
15.5/crystal??
17.06/6-31G**

16.3/solution?!
22.31/6-31G**

27.2/solution'®
30.27/6-31G**

12.3 (1)/gas?®
12.9 (1)/solution?”
15.16/6-31G**

72.82/6-31G**
9.61 (7)/solution?*

8.92/6-31G**

12.2 (2)/gas*?
13.2 (1)/solution®*

41.0/solution®
41.44/6-31G**33
(continued)
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Table 7.2 (continued)

Other Experiment

Molecule Diffraction Results or Theory
C.H,N,0, 0733  Multipole®’ 9.93/6-31G**
Alloxan (14)
C,H,N,0, 13.3 (43) Monopole®® 4% 139 (1)/solution*!
Uracil (16) 14.7 (43) Monopole*? 16.22/6-31G**
C,H;N,0 26.7 (47) Multipole*3 23.3 (est)/solution®*
Cytosine (17) 19.5 Multipole? 27.47/6-31G**
C.H;N,0, 80.4 (28) Monopole® 91-93/solution*?
Glycylglycine (18)
C,H,NO, 433 (33) Multipole*s 55.7-67.4/solution* 748
y-Aminobutyric acid (19) 67.00/6-31G**
C H,N,0, 1.3 (33) Monopole® 2.3 (1)/solution*?
p-Nitropyridine-N-oxide (20) 1.00/6-31G**
C H(4N,0, 14.7 (73) Multipole®° 13.9 (1)/solution*?
1-Methyluracil 21.3 (90) Multipole®® 18.27/6-31G**
CH,N,0, 5.3 (43) Monopole’!
3-Methyl-p-nitropyrine-N-oxide 11.9 (47) Monopole®!
CeH,N, 6.0 (33) Multipole’? 10.8 (7)/solution®?
9-Methyladenine (21) 8.0 Multipole?
CgH, N, 62.7 Multipole* 30.7/solution®*
Pyridinium dicyanomethylide (22) 32.7 Multipole®* 36.17/6-31G**
20.0 Multipole®*
340 DI-FB
27.6 DI-DB
CgH(,N,0, 2.3 (40) Multipole®® 3.77 (3)/solution®’
Barbital (23)
CyHCrO, 18.3 (83) Monopole®® 16.8/solution®?
Benzenechromium tricarbonyl
CoH (3N,0; 52.0 Monopole’
Cytidine
CoH (N;0,P 50.7 Monopole’
Deoxycytidine 5'-mono-phosphate
ClOH 1 3N503
Deoxyadenosine
C,oH,3N,O, 257(170)  Multipole®®
Adenosine 8.0 Monopole’
CoH, 4 N,0; 49,7 Monopole’
Deoxythymidine

* All quantities are given in units of 10”7 *° Cm (see Appendix K for conversion factors). The 6-31G** ab-initio results
have been obtained at the SCF level. generally at the neutron crystal geometry. DI: direct integration, DB: discrete
boundary, FB: fuzzy boundary, i.e.. stockholder concept.

(continued)
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TABLE 7.3 Diffraction Estimates of Quadrupole Moments Compared with Other
Experimental Results, Where Available, and with ab-initio Theory?

Quadrupole Other Experiment
Molecule Moment Diffraction Results or Theory
Cl, 0., +11.0 (20)  Multipole! +10.8 (5)/gas®
Chlorine +7.7(20)  Mutltipole! +16.5 (17)/gas®
+891/6-31G**
H,O O, +11.0 Multipole* +8.77 (7)/gas®
Water +33 Multipole® +7.93/6-31G**
o, —13.0 Multipole —8.34 (7)/gas
-29 Multipole —7.59/6-31G**
Q.. +20 Multiple —0.43 (10)/gas
-0.4 Multipole —0.33/6-31G**
CH;NO O, —0.6 (26) Monopole’ — 1.0 (7)/gas®
Formamide (4) —4.44/6-31G**
9, +9.1 (18) Monopole —11.3 (13)/gas
+12.58/6-31G**
(S —8.5(14) Monopole -10.3 (27)/gas
—8.14/6-31G**
o, —-55(12) —4.87/6-31G**
CH,N,O 0., +38.7 (60)  Multipole® +30.03/6-31G**
Urea (5) +36.4 (60) Multipole®
e, —354 (40)  Multipole — 19.00/6-31G**
—30.0 (40) Multipole
0. —~33(43) Multipole —11.04/6-31G**
—6.3 (40)  Multipole
C,H, 0., +24.3 (58) Multipole!®  +20.1 (6)/gas""
Acetylene +19.0 (36)  Multipole!® +23.23/6-31G**
+259(38) Monopole!®
+213(53) Monopole'®
+20.3 DI-FB!?
C,H, 0., +5.7 Multipole'® +4.7/gas!?
Ethylene +5.4 (3)/gas'*

+4.99/6-31G**
(continued)

Table 7.2 (continued)

References: ' Weber and Craven (1990), 2 Dyke and Muenter (1973), * Eisenstein (1988), * Stevens and Coppens
(1980). * Bats et al. (1986), ® Bats and Fuess (1986), 7 Delaplane et al. (1990), ® Pearlman and Kim (1990), ° Coppens
etal. (1979), ' Sears et al. (1966), ' Coppens et al. (1980), !2 Corfield and Shore (1973), !* Leavers and Taylor (1977),
'+ Koritsanszky et al. (1991), '° Schneider (1950), '® Kurland and Wilson (1957), !” Aroney et al. (1965), *® Moss
and Coppens (1980). ' Swaminathan et al. (1984), 2° Brown et al. (1975), 2! Kumler and Fohlen (1942), 22 Lefebvre
(1973), 2* Weber and Craven (1987), 2* Hirshfeld and Hope (1980), 2° Berkovitch-Yellin and Leiserowitz (1980),
26 Kojima et al. (1987), 27 Swaminathan and Craven (1984), 28 Fabius et al. (1989), 2° Larsen et al. (1984), *° He et
al. (1988), *! Craven and McMullan (1979), 32 Epstein et al. (1982), 33 Christen et al. (1982), ** Calderbank et al.
(1981). *% Destro et al. (1989), *® Khanarian and Moore (1980), 37 Swaminathan et al. (1985), *® Stewart (1970),
39 Srewart (1974), *© Stewart (1980), *' Kulakowska et al. (1974), *? Yanez and Stewart (1978), ** Weber et al. (1980),
** Palmer et al. (1983), *° Sakellaridis and Karageorgopolous (1974), *® Craven and Weber (1983), *” Edward et al.
(1973). *® Pottel et al. (1975), *° Katritzky et al. (1957), 3° Klooster et al. {1992), ! Baert et al. (1988), > Craven and
Benci (1981). 33 Bergmann et al. (1970), 5% Baert et al. (1982), ** Treiner et al. (1964), > Craven et al. (1982),
*" Soundararajun (1958), *® Rees and Coppens (1973), *° Lumbroso et al. (1973), ® Klooster and Craven (1992).
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Table 7.3 (continued)

Quadrupole Other Experiment
Molecule Moment Diffraction Results or Theory
0, —78 Multipole —12.0/gas
- 10.8 (7)/gas
—11.04/6-31G**
0. +2.1 Multipole +7.3 (10)/gas
+5.4 (3)/gas
+6.05/6-31G**
C,H, N, 9, +16.2 Muttipole'® +27.23/6-31G**
2-Cyanoguanidine (6) +27.2 Multipole!®
0,, +0.3 Multipole —12.95/6-31G**
—4.0 Multipole
0, —16.5 Multipole —14.28/6-31G**
—232 Multipole
C;H;N; 0., —20(13) Multipole!® —2.8 (31)/solutiont'’
s-Triazine (1) —24 (16) Multipole!® +2.03/6-31G**
~27(12) Monopole'®
—3.5(6) Monopole!®
—12 @) Monopole!®
C;H,N, o,, +19.4 Multipole!® —3.1 (9)/gas?®
Imidazole (12) —1.58/6-31G**
0,, +33 Multipole +22.6 (11)/gas
+17.43/6-31G**
Q,, —227 Multipole —19.6 (18)/gas
—15.84/6-31G**
e, —194 Multipole —9.61/6-31G**
C,H,N, 0,, +375 Muitipole!? +40.47/6-31G**
Pyrazine (15) Q,, —938 Multipole —~8.83/6-31G**
0.. 271 Multipole —31.64/6-31G**
9, +55.0 Multipole?! +8.56/6-31G**
C,H,N;0 o, +6.8 Multipole +8.56/6-31G**
Cytosine (17) 0., —61.8 Multipole —~17.11/6-31G**
Q,, +66.2 Multipole +454/6-31G**
Q,, —40.3 (35) Multipole?? -29.0 (17)/gas??
—32.3(35) Multipole —28.3 (12)/solution?*
C¢Hg —28.7(35) Monopole —28.30/6-31G**
Benzene 0,, —4.7(50) Multipole?® +34.61/6-31G**
—6.9 Multipole
CeN,F, e, +72.5(46)  Multipole +72.61/6-31G**
p-Dicyanotetra-fluorobenzene +61.5 Multipole ~107.22/6-31G**
©.. —68.8 (88)  Multipole
—54.6 Multipole

* All quantities are given in units of 107*° Cm? (see Appendix K for conversion factors). Other experimental results
are labeled as either " gas™ (i.e., microwave Zeeman or induced birefringence). or “solution™ (i.e.. induced birefringence
in a nonpolar solvent). The 6-31G** ab-initio results have been obtained at the SCF level. generally at the neutron
crystal geometry. DI: direct integration. FB: Fuzzy boundary. i.e.. Stockholder concept.

(continued)
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Since space partitioning introduces an ambiguity, there will be differences
between the moments obtained by the various methods. In accordance with
Kurki-Suonio’s requirement of locality (Kurki-Suonio 1971, Kurki-Suonio and
Salmo 1971) (chapter 6), excellent dipole and quadrupole moments are often
obtained with the simple spherical-atom «-formalism. The neglect of higher-order
atomic deformations in the k-formalism is apparently compensated by a subtle
bias in the spherical charge density parameters, such that a sum over all atoms
in the molecule still gives reliable estimates of the molecular properties.

7.3.2 Dipole Moments

X-ray dipole moments of formamide, of sulfamic acid, of benzene chromium
tricarbonyl, and of water, obtained from k-refinements, are in good agreement
with those from other physical techniques. When hydrogen-atom positions are of
crucial importance, as in the case of the water molecule, the availability of
positional information from neutron diffraction becomes essential if accurate
moments are to be obtained. In other cases, extension of the X—H bond to accepted
values provides a reasonable alternative.

Not surprisingly, formalisms with very diffuse density functions tend to yield
large electrostatic moments. This appears, in particular, to be true for the Hirshfeld
formalism, in which each cos” term in the expansion (3.48) includes diffuse
spherical harmonic functions with [ =n, n —2, n—4,...(0, 1) with the radial
factor r". For instance when the refinement includes cos* terms, monopoles and
quadrupoles with radial functions containing a factor r* are present. For pyridin-
ium dicyanomethylide (Fig. 7.3), the dipole moment obtained with the coefficients
from the Hirshfeld-type refinement is 62.7-10~3° Cm (18.8 D), whereas the dipole
moments from the spherical harmonic refinement, from integration in direct space,
and the solution value (in dioxane), all cluster around 31-1073° Cm (9.4 D) (Baert
et al. 1982).

On the other hand, dipole moments obtained with stockholder partitioning
tend to be systematically low; for pyridinium dicyanomethylide, the value is

FiG. 7.3 The pyridinium dicyanomethylide molecule.

Table 7.3 (continued)

References: ' Stevens (1979), 2 Buckingham et al. (1983), > Emrich and Steele (1980), * Weber and Craven (1990),
% Verhoeven and Dymanus (1970), ¢ Eisenstein (1988), 7 Stevens (1978), ® Tigelaar and Flygare (1972), ° Swaminathan
et al. (1984), ¥ van Nes and van Bolhuis (1979), ' Coonan and Ritchie (1993), '2 Moss and Feil (1981), '* Kukolich
et al. (1983), '* Dagg et al. (1982), !* Hirshfeld and Hope (1980), !® Price et al. (1978), ' Dennis (1986), '8 Stewart
(1970), '* Epstein et al. (1982), 2° Stolze and Sutter (1987), 2! Weber et al. (1980), 22 Spackman (1991), 2* Battaglia
et al. (1981), 24 Dennis and Ritchie (1991), 23 Hirshfeld (1984).
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TABLE 7.4 Diffraction Estimates of Second Moments Compared with ab-initio 6-31G** Results Obtained at the Same Geometry and with
Respect to the Same Coordinate System

Molecule Method Hox Uy 7. Hxy Mo, Hyz
Water® Muitipole —15.4 (24) —-21.4 (23) —14.6 (41) —-04 (15 —-2.5(16) —6.7 (15)
6-31G** —18.93 —20.67 —17.13 +0.35 —-1.09 —4.75
Urea® Multipole —64.6 (37) —86.1 (24) —36.7 (70)
Muitipole —68.9 (29) —84.7 (24) —40.5 (54)
6-31G** —~79.87 —85.17 —5249
2-Cyanoguanidine? Multipole -953 —116.2 —1290
Multipole —104.9 —115.5 —126.7
6-31G** —96.45 —1232 —124.2
Imidazole® Muitipole —100.8 (33) —95.8 (44) —67.5 (60) +0.3 (23) —10.3 (21) +13.7 (27)
6-31G** —101.45 —85.06 —-89.96 +5.46 —1.40 +1397
Cytosine® Multipole ~129.7 (109) —60.1 (141) — 1498 (71) +28.6 (86) -94 (46) —18.7 (51)
6-31G** —173.94 —10045 —160.75 +16.33 +2.38 —5.25
Benzene® Multipole —126.4 (34) ~11L0 (51) —126.5 (39) —7.5(23) —19.2 (25) —-6.2 (23)
Multipole —116.2 (27) —105.7 (41) -116.0 (32) —6.7 (18) —15.6 (20) —51(18)
6-31G** —117.72 —106.70 —117.87 —4.85 —13.34 —494
p-Dicyanotetrafluorobenzene® Multipole —329.7 (87) —287.6 (24) —236.2 (8)
Multipole —315.8 —2840 —-2384
6-31G** —359.50 —26495 -239.62

*The x and y axes are defined in terms of the crystallographic axes; in all cases, z completes a right-handed set of Cartesian axes. All quantities are in units of 107%° Cm?.

“xlla, ylb*

¢ x along two-fold axis, z in molecular plane.
¢ Principal directions; x and z in molecular plane.
¢ x along two-fold axis, y in molecular piane.

Source: Spackman 1992.
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20.0-1073° Cm (6.0 D); for water, 5.3-1073° Cm, versus 7-8-10~3° Cm by most
other methods in agreement with theoretical values; and 22.6:1073° Cm for
2-cyanoguanidine versus 27-30-1073° Cm from solution measurements and the-
oretical calculations. Hirshfeld and Hope (1980) have interpreted the lower values
obtained with the stockholder recipe as resulting from a mutual cancellation of
positive and negative deformation functions centered on neighboring molecules.
A deficiency in density in an interatomic or intermolecular region is proportionally
distributed among the contributing atoms, but there may be situations in which
the deficiency should be assigned entirely to one of the contributors, and in which
the other participants may, in fact, contribute excess density. The stockholder
recipe partitions the density according to each atom’s contribution to the
promolecule density, and the partitioned fragments therefore tend towards the
distribution of the promoiecule.

The dipole moments are generally affected by intermolecular electrostatic
interactions. In a crystal, molecules tend to line up such that opposite charges are
proximal, in order to maximize the electrostatic attractions. Induced polarization
therefore tends to enhance the electrostatic moments.

A simple calculation for urea by Spackman is instructive. Urea crystallizes in
an acentric space group (it is a well-known nonlinear optical material), in which the
symmetry axes of the molecules coincide with the two-fold axes of the space group.
All molecules are lined up parallel to the tetragonal ¢ axis. If the electric field is
given by E, and the principal element of the diagonalized molecular polarizability
tensor along the ¢ axis by «,,, the induced moment along the polar ¢ axis is

prd =a,,E, (7.46)

A dipole of magnitude p, causes an electric field along z, which, at a point
described by the polar coordinates (r, 8) (with the origin at the center of the dipole),
is equal to

2 -—
E, - U, 3cos 30 1 (7.47)
4re, r
The dipole induced by a single urea molecule at (r, §) is then
ind _ %zzitz 3c0s? 0 — 1 (7.48)

dre, r

As all molecules are oriented parallel to the tetragonal ¢ axis, the summation
over the neighboring unit cells is relatively simple. Using the gas phase value of
12.8-1073° Cm for the dipole moment, and a theoretical value of 6.54-10~%° Cm?
V™! for «a,,, the induced dipole moment is calculated as 2.57-1073° Cm, in
excellent agreement with the size of the discrepancy of 2.4-1073% Cm between the
gas- and condensed-phase experimental results of 12.8 and 15.2:1073%° Cm,
respectively (Table 7.2).

The solid-state molecular dipole moment has been evaluated in a recent HF
calculation on the crystal of urea. The result of 23.5-1073° Cm, compared with
17.2-107 3% Cm for the molecule in the observed geometry in the crystal, indicates
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a considerably larger enhancement (Gatti et al. 1994). Part of the underestimate
obtained with the simple interaction model will be due to its lack of self-
consistency. The more polar molecules in the crystal induce a larger moment in
their neighbors, so the calculation should be repeated until consistency is obtained.
Other effects, such as dipole—quadrupole interactions, may also contribute.

The evidence summarized in Table 7.2, and that obtained since the table was
compiled, indicate polarization effects in the crystal to exceed the errors of the
diffraction method. Additional examples of enhanced dipole moments in crystals
are mentioned in chapter 12.

7.3.3 Second Moments and Quadrupole Moments

In the derivation of the traceless quadrupole moments from the electrostatic
moments, the spherical components are subtracted. Thus, the quadrupole moments
can be derived from the second moments, but the opposite is not the case.
Spackman (1992) notes that the subtraction introduces an ambiguity in the
comparison of quadrupole moments from theory and experiment. The spherical
component subtracted is not that of the promolecule, but is based on the
distribution itself. It is therefore generally not the same in the two densities being
compared. On the other hand, the moments as defined by Eq. (7.1) are based on
the total density without the intrusion of a reference state.

It is found that comparison based on the second moments often gives the
better agreement. This is the case for the in-plane moments of benzene. For
cytosine and imidazole, the agreement with theoretical values is poor for the
quadrupole moments (Table 7.3). But comparison based on the second moments
(Table 7.4) reveals much better agreement, though the diagonal elements of the
moments appear systematically lowered relative to the theoretical values, especially
for cytosine. This is interpreted as being due to the strong hydrogen-bonding in
the crystals, which causes a contraction of the density, in accordance with
conclusions based on model studies on oxalic acid dihydrate by Krijn (1988) and
Krijn and Feil (1988).

Nevertheless, the diffraction quadrupole moments frequently compare well
with values from techniques such as induced birefringence and the Zeeman effect.
The ©,, value from a multipole analysis of Stevens’ diffraction data on chlorine,
for example, is in good agreement with a later birefringence study (Table 7.3). The
k-refinement values often show good agreement with results from other experi-
ments and from theory, as is the case for formamide, discussed at the beginning
of this chapter. For the @,, (out-of-plane) component of benzene, the agreement
is excellent, provided neutron diffraction thermal parameters are used. For
acetylene, the multipole values of ®,, of +259 (38)-107*°Cm and +21.3
(53)-107%% Cm, as well as the direct space integration value of 20.3-1074° Cm,
agree well with an experimental gas-phase value of +20.1 (6)- 10~ %% Cm and with
an ab-initio calculation that gives ©,, = 23.2-10"4° Cm.

For further discussion of the already extensive experimental information, the
reader is referred to the review by Spackman (1992). Spackman concludes that,
while the diffraction method may never become the routine method of choice for
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the determination of electrostatic moments, the diffraction data give a much more
detailed description of the distribution on which the quantitative values are based,
and contain a vast amount of information on intermolecular interactions which

must be accessible for work in other fields.



8

X-ray Diffraction and the Electrostatic
Potential

The distribution of positive and negative charge in a crystal fully defines physical
properties like the electrostatic potential and its derivatives, the electric field, and
the gradient of the electric field.

The electrostatic potential at a point in space, defined as the energy required
to bring a positive unit of charge from infinite distance to that point, is an
important function in the study of chemical reactivity. As electrostatic forces are
relatively long-range forces, they determine the path along which an approaching
reactant will travel towards a molecule. A nucleophilic reagent will first be
attracted to the regions where the potential is positive, while an electrophilic
reagent will approach the negative regions of the molecule.

As the electrostatic potential is of importance in the study of intermolecular
interactions, it has received considerable attention during the past two decades
(see, e.g., articles on the molecular potential of biomolecules in Politzer and
Truhlar 1981). It plays a key role in the process of molecular recognition, including
drug-receptor interactions, and is an important function in the evaluation of the
lattice energy, not only of ionic crystals.

This chapter deals with the evaluation of the electrostatic potential and its
derivatives by X-ray diffraction. This may be achieved either directly from the
structure factors, or indirectly from the experimental electron density as described
by the multipole formalism. The former method evaluates the properties in the
crystal as a whole, while the latter gives the values for a molecule or fragment
“lifted” out of the crystal.

Like other properties derived from the charge distribution, the experimental
electrostatic potential will be affected by the finite resolution of the experimental
data set. But as the contribution of a structure factor F(H) to the potential is
proportional to H ~ %, as shown below, convergence is readily achieved. A summary
of the dependence of electrostatic properties of the magnitude of the scattering

165
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TagLE 8.1 Dependence of the Electrostatic Properties and Other Quantities Derived
from the Experimental Structure Factors F(H) on |H|"

Property Type nin " nin {H|"
Electrostatic potential Scalar —1 -2
Diamagnetic shielding tensor Second rank tensor -1 -2
Electrostatic energies Scalar —1 -2
Electric field Vector -2 ~1
Electric field gradient Traceless Second-rank tensor -3 0
Charge density Scalar -3 0
Diamagnetic current density Vector -3 0
Gradient of field gradient Third rank tensor -4 1
Gradient of charge density Vector —4 1
Grad-grad of field gradient Fourth rank tensor -5 2
Hessian of charge density Second rank tensor -5 2
Laplacian of charge density Scalar -5 2

Source: Stewart (1991, p. 68).

vector H is given in Table 8.1, which shows that the electrostatic potential is among
the most accessible of the properties listed.

8.1 Definitions and Units
8.1.1 Definition of the Electrostatic Potential

The electrostatic potential at r', O(r'), due to a charge Q at r is defined by the
Coulomb equation (Jackson 1975)

o(r') = _Q__ 8.1)
4reglr — r'|
The factor 4ne, occurs when the quantities are expressed as SI units; g, is the
“permittivity of free space,” equal to 8.854 187821072 C2 N~ ! m~ % The factor
dney (=1.1126265-1071° C2 N~ m~2) disappears when either atomic or cgs
units are used, and we shall omit it in the expressions given. However, its
inadvertent omission in numerical calculations will lead to meaningless resulits.
The difference between the electrostatic potential at two points is equal to the
work required to bring a unit charge from one point to the other. The choice of
zero potential is arbitrary, but the potential is commonly defined as zero when
the particles are at infinite distance. Thus, the electrostatic potential at a point is
the work required to bring a unit of charge from infinity to that point.
For a continuous charge distribution, the potential is obtained by integration
over the space containing the distribution. At a point defined by r’, the potential
is given by

o) = J Prowa(F) 4 (8.2)
r —r'|

in which p,,,, represents both the nuclear and the electronic charge.
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For an assembly of positive point nuclei and a continuous distribution of
negative electronic charge, we obtain

o)=Y M —f PO e (8.3)

MRy — 1| Ir—r|

in which Z,, is the charge of nucleus M located at R,,.

Since the first contribution is positive, while the second is negative, the sign
of the potential at a point depends on whether the nuclei or the electrons
dominate at that particular point. An electrophilic reagent approaching this
distribution will be attracted by the electrons, but repelled by the nuclei.

8.1.2 The Electric Field

The electric field vector E at a point in space is the negative gradient of the
electrostatic potential at that point:

,00(r) |, 0d(r) od(r)
i —i -k

8.4
dy oz 4

Er = -V,0(r) = -

As E is the negative gradient vector of the potential, the electric force is directed

“downhill” and is proportional to the slope of the potential function. The explicit

expression for E is obtained by differentiation of the operator |r — r'|”! in Eq.

(8.2) towards x, y, z, and subsequent addition of the vector components. With

olr — r'|7'/8x = |r — r’| 2 0r'/0x, we obtain, for the negative slope of the potential
in the x direction,

E(r') = J‘ptotal(r) (r' —r), dr = jptotal(r) (' — 1), dr (8.5)

e —r'|? jr —1'| e —1'}?

which leads, after addition of all three components, to the expression

Er) = —V.O(r) = f Proa®E ~1) (8.6)

r—r'f?

8.1.3 The Electric Field Gradient

The electric field gradient (EFG) is the tensor product of the gradient operator
V =i0d/0x + jé/dy + k /0z and the electric field vector E:
VE=V,E= -V.:Vd 8.7

As in a Cartesian coordinate system the tensor product u:v, of the vectors u
and v, has the elements u,v;, the EFG tensor is a symmetric tensor with elements

o’

8.8
or, or, (8.8)

VE,; = —

The EFG tensor elements can be obtained by differentiation of the operator in
expression (8.5) for E, to each of the three directions f. This procedure removes
the spherical component, which does not affect the electric field, and yields the
traceless result
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OE l
E N a R I W . p'2
VESE) = 5o Lr—r']s {30, — 1)y — 1) = ¥ = 1'% 8,5} p,(x) d(r)

(8.9)

Including the spherical component, the electric field gradient can be interpreted
as the second-moment tensor of the distribution p(r)/[r — r'|°.

The definition of Eq. (8.8) and the result of Eq. (8.9) differ in that Eq. (8.8)
does not correspond to a zero-trace tensor. The situation is analogous to the two
definitions of the second moments, discussed in the preceding chapter. The trace
of the tensor defined by Eq. (8.8) is given by
o0*® + o + 62(I)>
oxr  0y* 822

An important equation of electrostatics, which follows directly from Maxwell’s
equations (Jackson 1975) is Poisson’s equation. It relates the divergence of the
gradient of the potential ®(r) to the charge density at that point:

V2O(r) = —47py010(1) (8.11)
Thus, the trace of the EFG tensor is only equal to zero if the charge density at r
1s zero.

The potential and its derivatives are sometimes referred to as inner moments
of the charge distribution, since the operators in expressions (8.2), (8.4), and (8.6)
contain the negative power of the position vector. Using the same terminology,
the electrostatic moments discussed in the previous chapter are described as the
outer moments.

-V =-V-VO = ——( (8.10)

8.1.4 Units

As p(r) is expressed in €A =3, and dr and |r — r'| ! have dimensions of A*and A~ 1,
respectively, expression (8.3) gives the potential in units of €A™, which equals
1.602-1072 Cm !, For conversion to SI energy units, the value of 4ne, is needed.
Since 4ne, is in C2 N~! m™?, the resulting unit has the dimension Nm C™!, or
JC~!. A more common unit in molecular studies is the kJ per electron per mole:
1eA 1 =1389kJe ' mol~'.! The electric field from Eq. (8.5) is expressed in
eA ™2, while Eq. (8.6) gives the electric field gradient in eA ~3, like p(r). Conversion
factors to other units are given in appendix K.

8.2 Evaluation of the Electrostatic Potential and its Derivatives
in Reciprocal Space

8.2.1 The Electrostatic Potential by Fourier
Summation of the Structure Factors

Since the electrostatic potential and its derivatives are directly related to the charge
density, it is not surprising that they also can be obtained by Fourier summation

Y 1eA T =1.602-107°Cm ™' = (1.602-107°)(6.022- 1023)(1.602- 107 19)/1.112626- 10" '°kJ (e mol " }) =
1389 kJ (e mol)™' = 322 Kcal (e mol) ™ 1.
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over the structure factors. We will give two different derivations of the relations

involved.
The electrostatic potential is defined in reciprocal space via the Fourier
transform expression

OH) = JQ(r) exp 2niH-r) dr (8.12a)
and the inverse relation
O(r) = JCI)(H) exp (—2niH-r) dr (8.12b)
Differentiation of both sides of Eq. (8.12b) gives
V. O(r) = —2mi '[H(I)(H) exp (—2niH-r) dH (8.13a)
and
V2O(r) = —4n® sz(D(H) exp (—2niH-r)dH (8.13b)

Substitution of the Poisson equation (8.11) into Eq. (8.13b) now leads to
—47popa = — 41 JHZ(I)(H) exp (—2#iH-r) dH (8.14)

In analogy to the definition of the total charge density, we define the total
structure factor F,(H), which includes both the nuclei and the electrons, and is,
excluding thermal effects, given by

Ftotal(H) = Z ZA exp 2niH .RA - Eeleclronic(H) (8' 1 53)
A
and

Protai(D) = J‘Fwtal(ﬂ) exp (—2niH'r)dH (8.15b)

Combination of Egs. (8.14) and (8.15a, b) gives (Bertaut 1952)
O(H) = + Fo(H)/nH? (8.16)
or, by inverse Fourier transformation,

F(H)
H2

1
o) =—3 exp (—2niH-r) (8.17)
nV H
which expresses the electrostatic potential as a Fourier summation with coefficients
Foa(H)/H?.
It is of interest to note a second, quite different, derivation of Eq. (8.17) (Su
1993). The electrostatic potential of Eq. (8.2) can be written as a convolution:

1
O(r') = Prora(1) dr = —* pioia(r) (8.18)
v —r'| r
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As the Fourier transform of 1/r is given by

1 1
f— exp (2ziS-r) dr = - (8.19)
r S
and the Fourier transformation of p,.,(r) is F,.(S), the Fourier convolution
theorem implies that the potential ®(r’) is given by the inverse Fourier transform

(p. 93) of the products of 1/(nS?) and F,,(S), or

' total( ) - to[al(H)
®(r') = J S exp (—2niS-r) dS = anwH exp (—2#iH-r")

which is identical to Eq. (8.17).

As the Fourier coefficients in Eq. (8.17) contain the factor 1/H?, the high-order
structure factors are of decreasing importance in the potential summation. The
emphasis on the low-order structure factors is less pronounced for the higher-order
electrostatic functions, such as the electric field and the electric field gradient, as
summarized in Table 8.1.

In analogy with the electron density summation of the structure factors, the
potential summation of Eq. (8.17) can be simplified using F(H) = A(H)+iB(H),
and Friedel’s law, F(H) = F(H)". The result is

d)(r)—AZI: “’1‘;‘( ) cos (2nH-1) + '°;;'( ) in 2rH- r)} (8.20)

1/2

8.2.2 The ®(0) Term in the Potential Summation

The summation in expression (8.17) contains a term with H = 0, representing the
average potential in the unit cell. This origin term is singular, and its evaluation
has been discussed extensively in the literature (see Su 1993, p. 9ff. for a critical
analysis).

We consider the behavior of the origin term when the continuous variable S
{=H at the reciprocal lattice points) approaches zero:

CFow(®) €20)

O(0) = lim (S ~ 0
0) =lim(§ ~0)— "

in which {F,,,(S)) is the angular average of F(S). If the nuclear contribution is
not included in the structure factor F(S), the numerator of Eq. (8.21) will not go
to zero in the limit (S — 0), and ®(0) is infinite. Thus, the Fourier summation of
Eq. (8.20) requires the use of the total structure factor.

Starting with

Foal(S) = J Prorailr) €xp (2niH -r) dr (8.22)
cell
we obtain, retaining the first two terms of the Taylor expansion of exp (2niS-r),

{Fiow(S)) = 2mi (81D prorailr) dvr — 272 (S )2 pioua(D) dr (8.23)

cell cell
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in which the averages are over the reciprocal space angular coordinates. The first
term in this expression is zero, while the average in the second term equals S%/3.
Substitution in Eq. (8.21) gives the expression (Becker and Coppens 1990)

2n
®0) = 1Y% Jce" rzptotal(r) dr (8.24)

where the integration is over the volume of the unit cell.

If the unit cell has a dipole moment, as is the case for polar crystals, the
macroscopic polarization must be taken into account. At the point r, it is given
by (47/3V ) ttynircen* ¥ (P. Becker 1990, unpublished results), or

2n 4
O0) = — = r? 1) dr + —— funircen” T 8.25
( ) 3VJ;,11 ptolal( ) 3V”umtcell ( )

in which the origin of r is located at the center of the crystal and y ., .q» the
unit-cell dipole moment, is related to the macroscopic polarization P per unit
volume by g ni cet = PVonitcen. The macroscopic polarization contribution varies
linearly with distance r from the center of the crystal. Its existence introduces an
ambiguity in the comparison of potentials in different polar crystals, as it depends
on the position of the unit cell in the crystal. For most chemical applications, this
term can be omitted. It is possible to select the unit cell such that it has a vanishing
dipole moment (Spackman and Stewart 1981, Avery et al. 1984), but this creates
a large surface charge, with an identical contribution to Eq. (8.25).

For the static density, the zero term in the potential can be expressed in terms
of the multipole coefficients of the aspherical-atom formalism. Substituting for
atom j at R;:

r=r—R;+R;=1r +R;

and integrating, we obtain, from Eq. (8.25) for the contribution to ®(0) due to
pseudoatom j,

2n
D,(0) = ‘W(Rf‘h + 2R, + ;) (8.26)

and, for the total distribution (excluding the macroscopic polarization term),

2 cell
D(0) = 3 Z (R7q;+ 2R, u; + w)) (8.27)
J
where g;, p;, and w; are the net charge, the dipole-moment vector, and the
spherically averaged second moment of atom j, respectively, all with the sign
convention of electronic charge being negative. All these quantities can be
expressed in terms of the population parameters as described in chapter 7. The
important first two terms in the summation of Eq. (8.27) are frequently omitted
in calculations, but cannot be ignored.
For the procrystal, composed of neutral spherical atoms, the first two terms
are zero, and we obtain

2n
(D(O)procrystal = _37/2 Zj<r_;g> (8.28)
j
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with
o [ pej@rtdr f 5

<rid fpe,j(r)dl‘ P, j(X)r* dr/Z; (8.29)
Equations (8.27) and (8.28) indicate that @®(0) will tend to be more positive
for a crystal containing heavier atoms. This is confirmed by experimental
measurements of ®(0) using electron-beam techniques. Measurements by electron
holography, for example, give the following values for a number of crystals: Si,
9.26 (8); MgO, 13.01 (8); GaAs, 14.53 (17); PbS, 17.19 (12) V (Gajdardziska-
Josifoska et al., as quoted in O’Keefe and Spence 1994). Thus, ®(0) must be taken
into account when different solids are compared, as in the studies of zeolites
described in chapter 11.

Unlike Eq. (8.27), the Fourier summation method for evaluation of the
electrostatic potential and its derivatives leads to the potential of the thermally
averaged distribution. However, the differences are likely to be small relative to
other uncertainties, especially when low-temperature data are used in the analysis.

8.2.3 The Electric Field and the Electric Field
Gradient by Direct Fourier Summation of the
Structure Factors

Like the potential, other electrostatic functions can be expressed as Fourier
summations over the structure factors (Stewart 1979). The electric field, being the
{negative) gradient of the potential, is a Fourier series in which the power of the
magnitude of H increases from —2 to —1, as expected from the reciprocal
relationship between direct space and Fourier space. Starting with

E(r) = —V,0(r) = —2ni jH(D(H) exp(—2niH'r) dH (8.13a)

and substituting
O(H) = + F oy (H)/nH? (8.16)

the Fourier summation of the electric field vector is obtained as

27i

E®) = = S(Fou(HYH)H exp (~2niH 1) (830)

The electric field gradient tensor has a trace equal to —4np,.,((r) [Eq. (8.11)].
According to Eq. (8.7), its Fourier component H is obtained by taking the tensor
product of the divergence vector V,, with E(H). Since E(H) = —2niH®(H) [Eq.
(8.13a)] and

OH) = fd)(r) exp 2niH r) dr (8.12a)
we obtain
[V..E]JH) = +4n°H:HOH) = +4aH:HF,,(H)/H? (8.31)

in which i:k represents the 3 x 3 tensor product of two vectors.
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The expression for the electric field gradient in direct space then becomes
[V:E](r) = 4—; S H:HF, ,(H)/H? exp (—2niH 1) (8.32)

Both the components of E and the elements of the electric field gradient as
given by Eqs. (8.30) and (8.32) are with respect to the reciprocal-lattice coordinate
system. A transformation is required if the values in the direct-space coordinate
systems are needed. To obtain the elements of the traceless VE tensor, the quantity
—({@4n/3)p.(r) = —(4n/3V) 3 F(H) exp (—2niH r) must be subtracted from each
of the diagonal elements VE;;.

8.2.3.1 Application of the Expressions; Use of
AF Series

As noted previously, the order of the derivative of the potential in real space
increases on going from the potential to the electric field to the field gradient.
Thus, the summation in reciprocal space becomes increasingly dependent on the
high-order structure factors (Table 8.1). So, though Eqgs. (8.28) and (8.30)
would appear to provide a straightforward recipe for evaluating the corre-
sponding physical properties, their application is hampered by series termina-
tion effects. Spackman and Stewart (1984) report that a data set on the mineral
stishovite (SiO,) with sin8/4 = 1.2 A~!, gave electric field maps with large
termination ripples, while even the potential maps were not entirely ripple
free. Such effects will, of course, be less serious for softer crystals with larger thermal
motion, which suggests the introduction of an artificial thermal motion as a
remedy, though this again raises the question of the equivalence of the properties
of the average distribution and the average of the properties of the instantaneous
distributions.

A better alternative is to use the difference structure factor AF in the
summations. The electrostatic properties of the procrystal are rapidly conver-
gent and can therefore be easily evaluated in direct space. Stewart (1991) de-
scribes a series of model calculations on the diatomic molecules N,, CO, and
SiO, placed in cubic crystal lattices and assigned realistic mean-square ampli-
tudes of vibration. He reports that for an error tolerance level of 1%, (sin 8/4),,., =
1-1.1 A~! is adequate for the deformation electrostatic potential, ~1.5A~"' for
the electric field, and ~2.0 A~! for the deformation density and the deforma-
tion electric field gradient (which both have Fourier coefficients proportional
to H).

Stewart’s conclusion underscores the need for short-wavelength, low-tempera-
ture studies, if very high accuracy electrostatic properties are to be evaluated by
Fourier summation. But, as pointed out by Hansen (1993), the convergence can
be improved if the spherical atoms subtracted out are modified by the x values
obtained with the multipole model. Failure to do this causes pronounced
oscillations in the deformation density near the nuclei. For the binuclear manganese
complex (p-dioxo)Mn(IIDMn(IV)(2,2'-bipyridyl),, convergence of the electrostatic
potential at the Mn nucleus is reached at 0.7 A~!, as checked by the inclusion of
higher-order data (Frost-Jensen et al. 1995).
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8.2.4 Application of the AF Summation to the
Electrostatic Potential in L-alanine

When the electrostatic properties are evaluated by AF summation, the effect of
the spherical-atom molecule must be evaluated separately. According to electro-
static theory, on the surface of any spherical charge distribution, the distribution
acts as if concentrated at its center. Thus, outside the spherical-atom molecule’s
density, the potential due to this density is zero. At a point inside the distribution
the nuclei are incompletely screened, and the potential will be repulsive, that is,
positive. Since the spherical atom potential converges rapidly, it can be evaluated
in real space, while the deformation potential A®(r) is evaluated in reciprocal
space. When the promolecule density, rather than the superposition of xk-modified
non-neutral spherical-atom densities advocated by Hansen (1993), is evaluated in
direct space, the pertinent expressions are given by (Destro et al. 1989)

(I)(l‘) = (Dspherical-atom cryslal(r) - <(Dspherical—atom cryslal(r)> + A(D(l‘) (833)

with, analogous to Eq. (8.17).

AD(r) = Y AF(H)

nVHZo H?

exp (—2niH-r) (8.34)

The term {(@,pericat-atom crystal () i0 Eq. (8.33) is the average potential in the
unit cell of the promolecule crystal, equal to ®(0) for the promolecule crystal.
Expression (8.33) thus gives the deviation from the average promolecule potential
in the crystal. Modification of Eq. (8.33) for the direct space evaluation of the
k-modified non-neutral spherical atom densities is straightforward.

The crystal potential for L-alanine calculated with Eq. (8.34) is shown in Fig.
8.1(a). The term @y icalatom(F) can be evaluated in direct space by the methods
described in the following section. The term ®(0) for the independent-atom model
[not exactly equal to the true ®(0)] was evaluated by a summation of the IAM
potential over the unit cell.

Figure 8.1(b) shows the electrostatic potential for the isolated molecule
consisting of pseudoatoms, calculated as described beiow. In both maps, the
zwitterionic nature of L-alanine is evident, with pronounced negative and positive
potential regions occurring near the opposing ends of the molecule near the COO~
and NHy groups, respectively. The crystal potential shows a saddle point in the
O- - -H hydrogen-bond regions, which is absent for the molecule lifted out of the
crystal.

8.3 Evaluation of the Electrostatic Functions in Direct Space
8.3.1 Basic Expressions
The multipole description of the charge density makes it possible to identify a

pseudomolecule in a crystal. The pseudomolecule is distinct from the molecules in
the procrystal, composed of noninteracting molecules, in the same sense as
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(b)

FIG. 8.1 Maps of the electrostatic potential in the plane of the carboxylate group of
L-alanine from 23 K X-ray diffraction data. Atoms not close to the plane are connected
by broken lines. Contour levels at 0.05eA ™', (a) By Fourier summation, Eqgs. (8.33) and
(8.34). (b) From the multipole coefficients for the isolated molecule. Source: Destro et al.

(1989).
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pseudoatoms are different from isolated atoms. The electrostatic properties of the
pseudomolecule can be derived directly from the multipole population coefficients.
The electrostatic quantities at the periphery of the pseudomolecule will include
the effect of induced polarization by neighboring entities, and are thus relevant
for the analysis of intermolecular interactions. The ®(0) term encountered in the
reciprocal space summation of the potential is absent in the direct space analysis.

To proceed, we rewrite Egs. (8.3), (8.6), and (8.9) for the electrostatic properties
at point P as a sum over atomic contributions:

ORD= 3 i ZJM dr (8.35)
m=p|Rypl M [¥p
R o ZJ i Mng) (8.36)
siZe [Rypl® Irpl
VE,R,)= - % Zy(3R,R; — ialeMpl ), 5 f pe,M(rM)(z.ra,ﬁs_ gltel?)
M+#P IR ypl ™

(8.37)

where the index M represents the atomic centers, a density function p, ,, being
centered at nucleus M. The label P refers to the field point at which the property
is being evaluated. The exclusion M s P applies only when P coincides with a
nucleus. Terms Z,; and R,, are the nuclear charge and the position vector of atom
M, respectively, while r,, is the vector from a point r to the nucleus, and rp, and
R, are, respectively, the vectors from P to a point r and to the nucleus M, such
that rp, = r — R, and R, = R, — Ry, as illustrated in Fig. 8.2.

The derivation of the electrostatic properties from the multipole coefficients
given below follows the method of Su and Coppens (1992). It employs the Fourier
convolution theorem used by Epstein and Swanton (1982) to evaluate the electric
field gradient at the atomic nuclei. A direct-space method based on the Laplace
expansion of 1/|Rp — r| has been described by Bentley (1981).

FIG. 8.2 Definition of vectors used in direct-space evaluation of the electrostatic properties.
P is the field point, M the nuclear position. The electron position is defined by the vector r.
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8.3.2 Analytical Evaluation of the Electrostatic
Properties Due to the Spherical Components of
the Charge Density

Since the spherical core- and valence-scattering factors in the multipole expansion
are based on theoretical wave functions, expressions for the corresponding density
functions are needed in the analytical evaluation of the integrals in Egs. (8.35)-
(8.37). The expansion of the Roothaan-Hartree-Fock wave functions for the ground-
state atoms tabulated by Clementi and Roetti (1974) can be used for this purpose.

In the Clementi and Roetti tables, the radial wave function of all orbitals in
each electron subshell j is described as a sum of Slater-type functions:

Yir) = Z C; e (8.38)

where v; is the number of basis-set functions for the orbitals in the subshell j. The
orbital wave functions are obtained by multiplication of the radial functions with
the appropriate spherical harmonics. The expansion coefficients C;; and the
exponents (; ; are, for basis functions with principal quantum number n, given by
Clementi and Roetti (1974). The power of r, n; =n — 1.

The spherically averaged atomic core and valence densities are obtained as
the sum over products of the radial orbital functions, or, including normalization,

(2nj,i+3) (2nj 3+ 3)
Moy =0 § 3 sz"') i)
Q2n; + 2!2n;  + 2)!

i=1k=1

X r(n,-,.-+nj,k)e—(CJ,i+5j.k)r (8.39)
and

b vy (2L, )2 I ) 2t
N _ Js Js
oP(r) § ; § ) ”\/ @2n;; +2)!2n;, + 2)

x priitnad o =@ i+ Liadr (8.40)

where y, and p, are the number of atomic orbitals in the core shells and valence
shells, respectlvely,  is the occupancy of the jth subshell and N, = ) %<, N, and
N,=Y" N; The terms pAr) and p(r) are normalized to one electron. For a’p
ground-state carbon atom, for example, with valence configuration 2s22p2, the
number of subshells in the valence shell u, equals 2, and N, =4, N, = 2, and
N, = 2. For carbon, the subshells are expansions of 6, respectively, 4, Slater-type
functions , that is, v, = 6, v, = 4. Because of the spherical averaging of p, and p,,
the occupancies of orbitals with the same n and [ values are the same, regardless
of their m values. In other words, the electrons in a subshell are evenly distributed
among the orbitals with different values of the magnetic quantum number m.

8.3.3 Electrostatic Properties and the Multipole
Expansion

While the calculation of the electrostatic functions from the multipole parameters
parallels that of the calculation of the atomic electrostatic moments, there is an
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important distinction. The atomic moments are local, that is, they depend only
on the density at one atom, but the electrostatic properties depend both on the
local and on the peripheral electron distribution. When the properties are
evaluated at the nuclear position, we will distinguish between central contributions
originating from the charge density centered at that nucleus, and peripheral
contributions by all other atomic densities. For a field point not coinciding with
a nucleus, all contributions are by definition peripheral.

8.3.3.1 Central Contributions

The electron density centered at M is the only central contributor at the
nuclear position M, as in this case the nucleus coincides with the field point P,
which is excluded from the integrals. For transition metal atoms, the central
contributions are the largest contributors to the properties at the nuclear position,
which can be compared directly with results from other experimental methods.
The electric field gradient at the nucleus, for instance, can be measured very
accurately for certain nuclei with nuclear quadrupole resonance and/or Mossbauer
spectroscopic methods, while the electrostatic potential at the nucleus is related
to the inner-shell ionization energies of atoms, which are accessible by photoelectron
and X-ray spectroscopic methods.

The operators for the potential, the electric field, and the electric field
gradient have the same symmetry, respectively, as those for the atomic charge, the
dipole moment, and the quadrupole moment discussed in chapter 7. In analogy
with the moments, only the spherical components on the density give a central
contribution to the electrostatic potential, while the dipolar components are the
sole central contributors to the electric field, and only quadrupolar components
contribute to the electric field gradient in its traceless definition.

We start with the spherical terms. Substitution of the density expressions (8.39)
and (8.40) into the second term of Eq. (8.35), and integration over the coordinates,
gives for the central electrostatic potential:

(2nj i +3)nr  \2nj K+ 3)
Z N Z Z C C . (2C11) (2€Jk)
g 2n;; + 21 2n;, + 2)!

c ji=1 i=1k=1

(Dcemral(RM ) - _

i+ ¢ QiR 2)

-2 )(2n, i+ 3) o y(2njc+3)
Z N Z Z (2KCJ,I) (ZKCJ.I()
i=1k=1 2n; i+ 2)!@n;, + 2)!

( Jl+njk 1)' KICO

00 ———— (8.41)
LR 4 Gy g)] et MO0 )

The last term in Eq. (8.41) originates from the Slater-type monopole in the
scattering formalism, with n, as power of r, and {, as exponent.
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The dipolar terms contribute to the electric field. With the density deformation
functions of the multipole model (chapter 3) and Eq. (8.36), one obtains

4 (K’C1)2
Ecentral R - _ N R
Rae) = 3 P (n, + Dn, +2)
central i _‘ﬂl)zh
ESME(Ry) = 3 Py, 11- (¥ D+ 2) (8.42)
Ecemral(R ) = i . (KI‘);\
3 (n1 + D(n, +2)

The electric field gradient elements VE,;(r), according to the traceless
definition of Eq. (8.9), are, according to Eq. (8.37), the expectation values of the
operator

1
<|7:T5 (3, — r)rg —rp) — fr — v’ 6w}>

which differs from the traceless quadrupole moment operator in Eq. (7.2) only by
the factor of 2/[r — r'|>. The expressions for the central contributions therefore
contain the same linear combinations of the population parameters P,,, as the
quadrupole moment expressions of Eq. (7.21). The results are:

Ecentral(R ) = E (K/CZ)B (HPM 22+ ﬁPM 20)
Snyny + D(ny +2) '

VESntalR ) = 3wy
w 5n,(ny + D(ny + 2)

cemral 6 (K Cz)s L
VEZ"(Ry) = Sny(ny + 1)(ny + 2)‘[ M.20

(nPy, 22+ + \/§PM.20)

Vil (8.43)
K
VEZSM2Y(R,,) = VES™A(R,,) = - : .22
S5ny(ny + Diny, +2)
3 (x'(y)?
VEiezmral R ) — VEcz:intral(R - 2 P
R W = Sy + Diny +2)
3 ‘(L)
VEcentral(R ) = VEcentral(RM) — (x Cz) TIPM,21 _
Sny(ny + )(ny +2)

in which {,, {,, n,, and n, are defined by Eqgs. (8.38) and (3.35).

8.3.3.2 Peripheral Contributions

In Eq. (8.18), we wrote the potential as a convolution of the total density and the
operator 1/r. Similarly, the integrals encountered in the evaluation of the peripheral
electronic contributions to Eqgs. (8.35)-(8.37) are convolutions of the electron
density p(r) and the pertinent operator. They can be evaluated with the Fourier
convolution theorem (Prosser and Blanchard 1962), which implies that the
convolution of f(r) and g(r) is the inverse transform of the product of their
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Fourier transforms F(S) and G(S), or
Jf(r)g*(r —R)dr = fF(S)G*(S) exp (—2niS-R) dS (8.44)

where * indicates the complex conjugate.

The calculation thus consists of three steps: (1) calculating the scattering
factors of the analytical charge density functions (see appendix G for closed-form
expressions), (2) Fourier transformation of the electrostatic operator, and (3) back
transformation of the product of two Fourier transforms.

Using the appropriate operators, the back transforms are given by

JP&MU“) dr = I fe‘M(ZS) exp (27iS-Ryp) dS (8.45)
rpl n IS
f D)_plﬂ%rﬂ)’ dr = 2i foTSIIIZ(S) exp (2miS-Ryp) dS (8.46)
Fp

J‘pe,M(rM)(:;xm,Pxn,P - 5mn,rl’|2‘) r
||'P|S

_ 2
_ _z_;; J(3S,,,S,, OmnSI%) e, m(S) exp QniS-Ryp) dS  (8.47)

IS?

In order to separate the integration into a radial and an angular part, the
exponential exp (1278 -r) may be expressed as the expansion (Cohen-Tannoudji et
al. 1977, Arfken 1970)

XK

exp (i2nS+1) = ) "2l + 1)j(2nSr) P(cos y) (8.48)
1=0
where P,(x) is the Ith order Legendre polynomial and y is the angle between S
and r. It can be shown that Eq. (8.48) is equivalent to the plane wave expansion
in terms of the complex spherical harmonics, used in chapter 3 for the evaluation
of scattering factors.
Assuming that all vectors on atom M are referred to the same local Cartesian
coordinate system of that atom, the results for the peripheral contributions to the
potential are?

Z
O (Rp) = Y M_
m=p [Rypl
2Pt B [QG)TIRE )T
S IRELCD WS IR e
M#pP (T }VC j=1 i=1 k=1 (2nj,,-+2)!(2nj‘k+2).

+ An,-+nk,0.0,0(Cj,i + Cj‘k’ |RMP|)

2 The symbol Y" indicates that the contributions of the individual atoms must be referred to the same
coordinate system.
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2Py, B U Y
+ - 2 N2 2 GG
T N, j=1 isie=

y \/ZZKCj,i)(Z"j'i+3)(2KCj,k)(2"j'k+3)
Q2n;  + 2)!'2n;j . + 2)!

X Ay ivn, 10,000k + £i)s IRygp))

Lomax Dy (m +3)

+8 Y ¥ (=Dt

11=0m =0 p; (nh +2)'

X An“,ll.ll,O(K'Ch’ RMP)I)llmlpldh"le(BRMP’ ¢RMP)} (849)

As before, the exclusion M # P applies when the point P coincides with a nucleus.

For compactness, the subscript M for the electronic density parameters has
been omitted in Eq. (8.49). The polar coordinate system has the z axis of the local
Cartesian coordinate system as the polar axis, and the vector Ry, is referred to
this local coordinate system.

PO

Ay 42, R) = J Gy+2.1(Z, 8)ji,(SR)S* dS (8.50)
0

is described in appendix H. Corresponding expressions for the peripheral contribu-

tions to the electric field and the electrostatic potential from the multipole

parameters are given in Su and Coppens (1992).

The expressions given here are valid for the multipole formalism of Hansen
and Coppens, as described by Eq. (3.35). With other formalisms, similar expressions
are used. Experimental molecular potentials reported in the literature include those
of imidazole (Spackman and Stewart 1984, pp. 302—320), phosphorylethanolamine
(Swaminathan and Craven 1984), alloxan (Swaminathan and Craven 1985), and
parabanic acid (He et al. 1988).

8.4 Comparison of Diffraction Results with Theory and Other
Experimental Values

8.4.1 The Comparison of Experimental and
Theoretical Potentials

Comparison of the experimental potential in a crystal and the theoretical potential
for an isolated molecule is an excellent test for the transferability of theoretical
isolated molecule densities to problems such as molecular packing and protein
folding. A systematic study of this kind was done on L-alanine. Figure 8.3 shows
a comparison between theory and experiment for a plane containing the C—N
bond in this molecule. The comparison is with the 6-31G** basis set of
double-zeta-plus-polarization quality. The agreement of experiment with more
modest basis-set calculations was found to be inferior, which gives confidence in
the experimental results. Both in the plane shown, and in the plane of the carboxyl
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(a) (b)

(c)

FIG. 8.3 (a) Theoretical, (b) experimental, and (c) difference between theoretical and
experimental potential in a plane containing the C—N bond of the L-alanine molecule. The
NH; group is on the right, with one hydrogen atom in the plane, and the others above
and below the plane, respectively. Source: Destro et al. (1989).

group, the experimental potential is more diffuse than the theoretical result, the
positive areas near the nuclei being lower, and the negative areas in remote regions
being less negative. An anomaly is found near the H(4) hydrogen atom bound to
the a-carbon atom, where a large residual feature occurs in the difference potential
[Fig. 8.3(c)]. Both oxygen-atom regions show a similar potential, notwithstanding
the different environment of the two atoms. The overall pattern is very similar in
theory and experiment.

Further systematic studies are required to establish overall patterns suitable
for application in molecular modeling calculations.
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8.4.2 The Relation Between the Electrostatic Potential at the
Nuclear Position, the 1s Binding Energy and the
Net Atomic Charge

The electrostatic potential at the nuclear position correlates qualitatively with the
I1s-electron binding energy &. The correlation is negative: when the electrostatic
potential is more positive, the negative electron will be more tightly bound.

For first-row atoms, the quantitative relation between the variation in binding
energy &,, and the potential at the nuclear positions due to the valence electrons,
D, is well established (Basch 1970). Early SCF calculations showed that for C,
N, O, and F atoms in a series of small molecules, the ratio A(—¢)/AD,, is very
nearly constant, as illustrated in Fig. 8.4 (Schwartz 1970). A(—¢,,) is the difference
between the 1s binding energy in a molecule and that in the corresponding hydride,
and A®,,, is the corresponding difference in ®,,,. Here, @, = ®,,,, — ®,,. The
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? | | CO(C) o |
I 57 T
| _
4 S HEQO(C};_
[ ! _ ~ COo(O)
i ; ' HCN(C) 2 | 1
[ HON(N) O |
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FiG. 8.4 Relation between the change in 1s orbital energy for first-row atoms and the
potential at the nuclear position due to the valence electrons. Both are expressed relative to
the corresponding hydride (i.e, CH,, NH;, H,0, and HF for C, N, O, and F, respectively).
The label in the brackets specifies the nucleus being considered. Source: Data in Schwartz
(1970).
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potential at the nucleus due to the 1s electrons, @, , is for a given element virtually
unaffected by chemical substitution, but increases with increasing nuclear charge.
The variations in the potential at the nucleus for a given element are due to
bonding-induced changes in the valence-shell distribution.

The binding energy can be derived experimentally through its relation with
the ionization energy I:

I=¢—R (8.51)

where R represents the reorganization energy released when the ionized atom
relaxes to a lower energy state. In the much-used approximation of Koopman’s
theorem (1934), the relaxation energy is neglected, and the ionization energy
becomes equal to the binding energy. But even when Koopmans’ theorem is not
valid, the correlation between ionization energy and the binding energy holds
approximately, as long as the relaxation energies do not vary much among the
species being compared. Saethre et al. (1985) have derived the reorganization
energies upon ls ionization for a number of diatomic halides by combining
core-ionization energies and Auger kinetic energies. Results on F,, HF, and CIF,
and corresponding analogues for other halogen atoms, show non-negligble
variations in the reorganization energy R, especially for the fluorine-containing
species.

When experimental values of AR are available, the variation in the ionization
energy among species can be related to the change in the potential at the nuclear
position by

A(I)nuclt:us ~ Ae = Al + AR (8.52)

The approximate relation between the electrostatic potential @, .. and the
net charge on the atom q is frequently being used for the derivation of net atomic
charges in molecules from ionization energies (Siegbahn et al. 1967). As pointed
out by Saethre et al. (1991), the assumption that g, ~ AD, ., ; IS too simplistic
and ignores the effect of the detailed charge distribution, which is implicit in Eq.
(8.52).

It is exactly in the evaluation of the detailed charge distribution that X-ray
methods provide the needed information. The comparison of diffraction-derived
electrostatic potentials with binding energies determined by either photoelectron
spectroscopy or X-ray resonance scattering is a field that merits further attention.
The comparison of resonance-edge shifts and X-ray electrostatic potentials for a
mixed valence complex (u-dioxo)Mn(IIDMn(IV)(2,2"-bipyridyl), (BF,), gives
encouraging results, which are in agreement with theoretical values for the binding
energy (Table 8.2) (Gao et al. 1992, Frost-Jensen et al. 1995).

8.4.3 The Electric Field Gradient at the Nuclear
Position

For nuclei possessing an electric quadrupole moment, the electric field gradient
at the atomic nuclei can be measured accurately by techniques such as nuclear
quadrupole resonance, Mdssbauer spectroscopy, nuclear magnetic resonance, and,
for gaseous species, by microwave spectroscopy. The diffraction data permit an
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TABLE 8.2 Differences in Ionization Energy I, 1s Binding Energy ¢,,, and
Electrostatic Potential ® at the Mn Nuclei in (u-dioxo)Mn(HI)Mn(IV)
(2,2-bipyridyl), (BF,);

Mn(IID)-Mn(1V) (eV)

Al Resonance scattering 3.7-40 (1.0)
Agy Theoretical calculation 3.17
AD Diffraction:
Direct space 3.6 (2.0)
Reciprocal space 25(>0.2)
Al Diffraction, corrected for reorganization energy:
Direct space 40 (2.0
Reciprocal space 29 (>04)

Source: Gao et al. (1992), Frost-Jensen et al. (1995).

interpretation of the spectroscopic results in terms of the detailed charge distribu-
tion, and can provide the signs, which are not generally available via the other
methods.

For transition metal atoms, the dominant contribution to the electric field
gradient at a nucleus originates in the valence shell centered on that nucleus. The
application of Eq. (8.41) to transition metal complexes will be discussed in chapter
10.

Peripheral contributions become important when short interatomic distances
are involved, as, for example, for the EFG at nitrogen nuclei and especially at
nuclei of hydrogen atoms. Since hydrogen has only one electron, the electric field
gradient is mainly due to the density farther from the nucleus, and has therefore
been described as less sensitive to the precise charge distribution (Tegenfeldt and
Hermansson 1985).

This is borne out by calculations, and by the good agreement between X-ray,
and NMR, and theoretical values, illustrated for the molecule of benzene in Table
8.3. Unless the hydrogen atoms participate in strong hydrogen-bonds, such as in

TABLE 8.3 Experimental and Theoretical Values of
the Electric Field Gradient at the Deuterons in
Deuterobenzene (e au ™ 3)

Theory
X-ray* NMR?® (6-31G**)
VE,, 0.16 (2) 0.143 0.181
VE,, 0.13 () 0.132 0.157
VE.. —0.29 (2) —-0.275 —0.338
n 0.10 (1) 0.04 0.07

Source: * Z. Su and P. Coppens, unpublished, based on X-ray and
neutron data of Jeffrey et al. (1987) and private communication.
® Millet and Dailey (1972).
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LiOH-2H,0, the unperturbed spherical atom contribution to the EFG dominates,
while the contribution from the deformation density is relatively small.

The EFG data from the multipole parameters are, in principle, for the static
crystal; while the spectroscopic data are affected by vibrations. There may therefore
by a systematic difference between the two sets of values, which is evident for a
number of hydrogen-bonded hydroxyl groups and water molecules studied by
Tegenfeldt and Hermansson (1985), but is not apparent in the data in Table 8.3.
The EFG values for H atoms in hydrogen-bonds is further discussed in chapter 12.

8.5 The Electrostatic Potential Outside a Charge Distribution

8.5.1 The Electrostatic Potential Qutside a Charge
Distribution in Terms of the Multipole Moments

The potential outside a charge distribution can be expressed in terms of a finite
series of the outer moments of the distribution. The expression is obtained through
a power series expansion of r ™!, where r is the distance from the field point to
the origin of the distribution, and subsequent integration (Hirshfelder et al. 1954,
Buckingham 1978). At a point r;, with components r,, for unit value of 4xe,, one

obtains

)
;’3 + higher order terms  (8.53)
L

\
o) =T 4 B
¥ r;

1 i

1
+ 3 [3r,r5 — r? 8,41

where the Einstein convention implying summation over repeated indices is used.
In this expression, the moments ®,;, and Q,;, of the total charge density are
traceless, as defined in Eq. {7.2). Since the traceless electrostatic moments are not
dependent on the spherical components of the neutral atom, they can equally well
be calculated from the deformation density.

The summation in Eq. (8.53) is slowly converging if a molecular charge
distribution is represented by a single set of moments. However, the expression
can be written as the summation over the distributed moments, centered at the
nuclei j, which is precisely the information available from the multipole analysis:

O(r;) = Z[

i

; r; 1 Q,
4, ”—3—1 + 5 By — 1o, ] =2

ij ij ij
2 Qaﬁvj
+ [Srajrﬂjryj —r (rajéﬂ}, + rﬂjéw + r}'jéaﬂ)] —S’r.]- + - (8.54)
ij
in which r;; measures the distance from each center j of the expansion to the field

point i. Equation (8.54) is the limiting case of Eq. (8.49) for very large values of
Ryps or exp (— Ry pZ) = 1 in the integrals Ay, ,,.«{Z, R) occurring in Eq. (8.49).

8.5.2 Net Atomic Charges Reproducing the
Electrostatic Potential

For a study of nonbonded interactions, it is of practical importance to identify
the net atomic charges that best reproduce the potential on the periphery of the



X-ray Diffraction and the Electrostatic Potential 187

TABLE 8.4 Dipole Moments (in Debye), According to the SCF Wave Function, from
Potential-Adjusted Charges and from Mulliken Charges Derived from the Same Wave
Function, Compared with Experimental Values

SCF Potential Mulliken Experimental
(6-31G**) Charges Charges Values (Gas Phase)
H,O 2.196 2.258 1.0t 1.850
NH, 1.886 1.850 0.762 1.470
N,CO 2.749 2.695 1.644 2.330
CH,0H 1.914 1.864 1.336 1.700
H,NCHO 4.486 4458 2412 3.730

Source: Chirlian and Francl (1987).

molecule. The idea of fitting the charges to the theoretical potential around the
molecule was first proposed by Momany (1978), and elaborated by Chirlian and
Francl (1987). The resulting net charges are reasonable and reproduce the
molecular dipole moments from the same calculations much better than Mulliken
charges, as illustrated in Table 8.4.

The methods adjust the atomic net charges g; in a least-squares minimization
with a discrepancy function equal to the sum of the potential differences over all
n sampling points:

n \2
A= Z (q)exact(k) - Z IZL) (855)

k=1 i ik

The location of the sampling points used in Eq. (8.55) is crucial. Typically,
points are selected on and just outside the van der Waals envelope of the molecule.
Woods et al. (1990) selected 100 points per atom randomly within a spherical shell
around each atom, but outside the van der Waals envelope of the molecule.
Ghermani et al. (1993), in an analysis of experimental charge densities of peptides
and pseudopeptides (modified peptide molecules), place the sample points on the
surfaces of atom-centered spheres. In the application to the pseudopeptide
N-acetyl-o,f-dehydrophenylalanine methylamide, the sampling points are selected
to be equidistant and are located on composite spherical surfaces with radii 2-8 A
around the nuclei in the molecule (Fig. 8.5). The potential used as the starting
point in the fitting was calculated for a molecule composed of spherical atoms, with
experimental charges and contraction parameters from the x-refinement. For a
sphere radius of 2 A, the fitted charges differ by several percent from those obtained
with larger radii, but convergence is reached rapidly when the sphere radius is
increased, or more spheres with large radii are added. The charges obtained are
within 0.06 e of the values from the x-refinement providing the starting density
for the minimalization. No molecular neutrality constraint was used; a total charge
of —0.19 e resulted.

The observed and fitted potentials in the region of a peptide link are compared
in Fig. 8.6. Except for the inner regions, the agreement is satisfactory. In particular,
the pronounced negative areas in the proximity of the oxygen atom are well
reproduced.
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FIG. 8.5 Sampling-point shells used to obtain potential-adjusted charges of N-acetyl-a,f-
dehydrophenylalanine. Source: Ghermani et al. (1993).

A geodesic scheme for the selection of sampling points has been proposed by
Spackman (1996). The points are arranged on a series of fused-spherical van der
Waals surfaces, and are arranged in a regular pattern, based on the tesselation of
the icosahedron. The resulting charges are reported to have less dependence on
molecular conformation than those from a number of other sampling techniques.

Francl et al. (1996) examined the conditioning of the least squares matrix in the
fitting procedure, and conclude that the method cannot be used to assign
statistically valid charges to all atoms in a given molecule. This problem cannot
be alleviated by the selection of more sampling points, and thus may require the
introduction of chemical constraints to reduce the number of charges to be
determined.

Rather than fit the potential at the periphery of the molecule, Su (1993) has
fitted @ at the nuclear positions. The potential at the nuclear positions can be
directly related to the total energy of a molecule (chapter 9) (Polizer 1981), as well
as to the atomic ionization energies (as discussed in section 8.4).

TABLE 8.5 Comparison of Equivalent-Potential and Refinement
Charges for Atoms of COO™ Groups in L-Alanine (top line) and
D,L-Histidine (bottom line)

Potential Refinement

Periphery At nuclei K Multipole?

C +0.55 -0.06 +0.49 (4) —0.06 (6)
+0.11 —0.08 +0.51 (5) —0.16 (22)

o) —0.65 —-033 —0.58 (3) —041 (3)
—0.68 —0.34 —0.65 (4) —045 (8)

0(2) -0.76 —0.40 —0.69 (3) —0.45(3)
~0.65 -0.35 —0.68 (4) —048 (9)

Source: Su (1993).
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FIG. 8.6 Electrostatic potential maps in the region of one of the peptide links in N-acetyl-a,f-dehydrophenylalanine methylamide. (a) Observed.
(b) From net charges fitted to the potential. Contours are at 0.05eA ™! (1 eA)™! = 332.1 kcal mol~'). Zero and negative contours are dashed lines.
Source: Ghermani et al. (1993).
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TABLE 8.6 Molecular Dipole Moments (D) from Fit to the Potential at the Nuclei, and Directly from X-ray Refinements

@ at nucleus

Ky® = K Multipole Solution
1.0 14 Refinement Refinement Reference Value Reference
L-Alanine 8.6 12.7 125 (2) 133 Li (1989) 12.3-17.0¢ McClellan (1974)
»,L-Histidine 139 16.0 16.9 (7) 23 (1) Li (1989) 13.5¢ Khanarian and Moore (1980)
MNA® 19.2 234 25 (6) 25 9 Howards et al. (1992) 6.98¢ McClellan (1963)
PDM® 7.0 8.5 1t 9.8 Baert et al. (1982) 9.2¢ Treiner et al. (1964)

* k Expansion—contraction parameter in definition of hydrogen density function.
" MNA = 2-methyl-4-nitroaniline, PDM = pyridium dicyanomethylide.

¢ In H,0.

9 In dioxane.

Source: Su (1993).
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The charges obtained with nuclear sampling points are very different from
those derived with the fit at the periphery. In Table 8.5, the results of the two
methods at the carbon and oxygen atoms in the carboxyl groups in alanine and
histidine are compared with the primary X-ray charges. Interestingly, for this
example, the periphery-adjusted charges agree well with the results of the
k-refinement, while the nucleus-adjusted charges are closer to those from the
multipole refinement. The molecular dipole moments of a number of molecules are
quite well reproduced by the nucleus-adjusted charges, particularly when the fixed
k-value of 1.4 is used for the hydrogen valence shell in the fitting procedure (Table
8.6).

In all fitting procedures, electroneutrality and electrostatic-moment constraints
may be introduced to provide additional observational equations.



9

The Electron Density and the Lattice
Energy of Crystals

9.1 The Total Energy of a System

The total energy of a quantum-mechanical system can be written as the sum of
its kinetic energy 7, Coulombic energy E,,,, and exchange and electron correla-
tion contributions E, and E_,, respectively:

E=T+ ECoul + Ex + Ecorr (91)

The only term in this expression that can be derived directly from the charge
distribution is the Coulombic energy. It consists of nucleus-nucleus repulsion,
nucleus—electron attraction, and electron—electron repulsion terms. For a medium
of unit dielectric constant,

Eco =} Z Z,Z; + Z ZOR,) + 4 jjm drdr (9.2)
% Ry i (r—r)

where Z; is the nuclear charge for an atom at position R;, and R;; = R; — R;. Even

though the other terms in Eq. (9.1) cannot be directly calculated from the electron

distribution, they can be related to it through the expressions of density functional

theory, as discussed in the following sections.

9.2 Density Functional Expressions for the Energy

9.2.1 The Hohenberg-Kohn Theorem

A theorem due to Hohenberg and Kohn points to the central role of the electron
density in representing the properties of a system. In 1964, Hohenberg and Kohn
(1964) proved that the properties of a system with a nondegenerate ground state
are unique functionals of the electron density.

192
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The proof of the Hohenberg—Kohn theorem is quite straightforward. Exclud-
ing nucleus—nucleus interactions and the nuclear kinetic energy, the Hamiltonian
may be written as

ﬁ=_5zvge+zm,.)+z:- 9.3)
i i i>jlij
where the sum is over all the electrons in the system. The term V(r;) represents
the electrostatic electron—nucleus interaction operator, while the first and the last
terms are the electronic kinetic energy and electron—electron repulsion operators,
respectively.

Suppose a Hamiltonian H has an exact nondegenerate ground state ¥, with
energy E, and a second Hamiltonian H' has a nondegenerate ground state ¥’ with
energy E', where H and H’ differ by their local potentials ¥(r) and V'(r),
respectively. Then W’ will not be an eigenfunction of H as long as ¥(r) — V'(r) is
not a constant. So, if ¥’ is used as a trial wave function for H, the corresponding
energy will, according to the variational theorem be larger than the true energy.
Thus, from Hy' > Ey’

E + {(V— Vhp'(r)dr > E (9.4)
Similarly, if ¥ is used as a trial function of ﬁ’,
E + j(V’ — V)p(r)dr > E’ 9.5)

In the case that p(r) = p'(r), addition of the two equations gives
E'+E>E +E 9.6)

Since this is a contradiction, it follows that p(r) # p'(r). Thus, there is a
one-to-one correspondence between the local potential V(r) and the electron
density p(r). This implies that ¥, ¥, and E are uniquely determined by the electron
density, and therefore are functionals of the electron density. If E is a unique
functional of the electron density p, the kinetic and exchange-correlation energies,
T and E,, must be functionals of p also.

The Hohenberg-Kohn theorem does not go beyond this point; it offers no
guidance on the nature of the functionals that it shows must exist.

9.2.2 Density Functional Expressions

Density functionals are discussed extensively in the literature (Dahl and Avery
1984, Parr and Yang 1989, Ziegler 1991), and their development is an active field
of research.

In the simplest form, the Thomas-Fermi—-Dirac model, the functionals are
those which are valid for an electronic gas with slow spatial variations (the “nearly
free electron gas™). In this approximation, the kinetic energy 7T is given by

T=c¢ Jp(r)t(p) dr 0.7
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where ¢, = %(37%)%3, and the function t(p) = p(r)*3. The exchange-correlation
energy E,  is also a functional of p:

Exr = —C fp(r)exc(p) dr (98)

where ¢, = 3(3/n)'/? and e, (p) = p(r)'>.

There are extensive discussions in the literature concerning to what extent Eq.
(9.8) includes at least part of the correlation energy. A critical examination has
been made by Sabin and Trickey (1984). Expressions (9.7) and (9.8) are referred
to as local density approximations (LDA), as the functionals depend on the local
density only. Nonlocal functionals include the gradient of p(r) and generally give
improved agreement with exact values.

Density functional calculations of molecules, using a Hamiltonian including
density functionals, frequently reproduce observed properties, such as bond and
excitation energies, reaction profiles, and ionization energies (Ziegler 1991).
For tetrafluoroterephthalonitrile (1,4-dicyano-2,3,5,6 tetrafluorobenzene), there is
excellent agreement between the electron density from a density functional
calculation (Delley 1986) and the X-ray diffraction results (Hirshfeld 1992) (see
chapter 5). Avery et al. (1984) have proposed the use of experimental densities in
crystals as a basis for band structure calculations.

9.2.3 The Total Energy as a Function of the
Electrostatic Potential at the Nuclear Position

In the Thomas-Fermi theory (March 1957), the electrostatic potential at r is
related to the electron density of a neutral atom by the density functional

O(r) = cp(r)*? 99

where ¢ = 4.7854.
This expression has been used to derive an approximate value for the total
energy of an atom in terms of the potential at the nuclear position

Epom = KZ® 1eus (9.10)

atom

in which k is 3/7 = 0.4286, compared with the exact value for the hydrogen atom
of 0.5. In an extension of this expression to molecules, due to Politzer (1979), the
total electronic energy of a molecule is expressed as

E Y kZ®(0) (9.11)

all atoms

molecule, electronic —

in which ®(0) is the potential at the nucleus i due to all electrons, and k; is equal
to 3/7, as it is for atoms, or selected such that either free atoms or a number of
small molecules have the exact Hartree—Fock energy (Politzer 1981). The values
of k from the best energy fit differ only a little from 0.4286; they vary between
0.4379 and 0.4159, from which it is concluded that k = 3/7 will lead to energies
within 2-3% of the correct values.
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TABLE 9.1 Politzer Molecular Energies (au) Derived from the X-ray Charge Density

Epor 6-31G** MP2? 2 (isolated atoms)
benzene —237.5 (6) -230.7 -231.5 —229.1
D,L-Histidine —-557 (3) —5384° —-543.5
L-Alanine —-329 (3) -3218 —320.1

2 Méller-Plesset-2 calculation, including correlation.
®STO-3G.
Source: Su and Coppens (1993).

Politzer energies from the X-ray charge densities of a number of molecules
are given in Table 9.1. They are within several percent of the best theoretical
values. The difference between the isolated atom energy (last column of the table)
and the total energy gives an estimate for the binding energy of the system. But
the uncertainties in the density-functional energies are of the same order as the
binding energies; thus, the utility of the method, at present, appears limited.

Bentley (1979) has used experimental data on beryllium and diamond to
obtain values for the binding energy in the Politzer approximation. Theoretical
atomic densities are projected into density functions as used in the experimental
analysis, and the atomic energies are subsequently obtained with Eq. (9.11) and
compared with isolated atom energies in the same approximation. Bentley reports
reasonable agreement within 0.02 H (~ 10%) for diamond, but a large discrepancy
for the beryllium binding energy.

9.3 The Cohesive Energy of lonic Crystals
9.3.1 The Point-Charge Model

Cohesive energies are defined as the difference between the total energy of a system
and the sum of the energies of its components. If there is a rearrangement of the
separate component densities when the components are brought together, this
distortion must be taken into account.

It is quite remarkable that electrostatic calculations based on a simple model
of integral point charges at the nuclear positions of ionic crystals have produced
good agreement with values of the cohesive energy as determined experimentally
with use of the Born—Haber cycle. The point-charge model is a purely electrostatic
model, which expresses the energy of a crystal relative to the assembly of isolated
ions in terms of the Coulombic interactions between the ions.

The geometry of the crystal introduces a factor muitiplying the pairwise ionic
interaction, which is the Madelung constant . It is a dimensionless constant,
dependent on the geometry of the crystal under consideration. For an ionic binary
crystal, consisting of N each positive and negative ions, u is defined by

99 _ Na'q"u

J#k ko Vi r

E

(9.12)

1
electrostatic 2
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where r is the nearest-neighbor distance, and the summation is over all ion pairs
in the crystal.

Equation (9.12) implies the assumption that the kinetic energy and exchange-
correlation terms in Eq. (9.1) are the same for the crystal and the assembly of
isolated ions.

9.3.2 Fourier Series for the Total Electrostatic Energy
The Coulombic electronic energy of a continuous charge distribution is defined as
Econ =1 f f POPE) 4o gy = f ) p(r) dr 9.13)
r—r )

The integration can be performed in reciprocal space, like the reciprocal-space
evaluation of the electrostatic potential discussed in chapter 8. According to
Parseval’s rule (discussed in chapter 5),

J ®(r) p(r) dr = J O(H)F(H) dH (9.14)

For the periodic crystal, the integral is replaced by a summation. With Eq.
(8.16) for ®(H), we obtain

— Z Fu(H)/H? (9.15)

where E,.,, the total structure factor as defined in chapter 8 [Eq. (8.15)], includes
the nuclear contribution.

Expression (9.15) gives the total electrostatic energy and not the cohesive
energy of a molecular crystal. It ignores the quantum-mechanical nature of the
charge distribution; an electron cannot interact with itself, but just such a
“self-energy” is included in the expression.

9.3.3 The Accelerated Convergence Method and the
Electrostatic Potential in a Point-Charge Crystal

The summation of the electrostatic interaction over a crystal, according to Eq.
(9.12), converges poorly because of the increasing number of neighbors at large
distances. Ewald’s (1921) method of accelerated convergence circumvents this
problem.

The electrostatic properties of a point-charge crystal are given by the direct
space sum

Nq...

Z Z‘Iﬂk"ﬁ(" (9.16)
#k K

where the sum over j is over one unit cell and the sum over k is over the lattice,
and excludes j = k in the origin cell; the g; are generalized coefficients. The term
s,, for example, is the electrostatic interaction energy defined in Eq. (9.12), and
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se, with the proper choice of coefficients, equals the London dispersion energy,
to be discussed later. .
Expression (9.16) may be divided into two parts:

Sp = % Z Z CIj‘Ikrﬁ("(P(’"jk) + % Z z qﬂk"ﬁ"{l - (P("jk)] 9.17)

i#k k i#k k

The second term in this expression is evaluated in reciprocal space using Eq. (9.15);
¢(r;) is the convergence function, given by (Nijboer and De Wette 1957)

2 2 €L
= w _ ! "2 Lexp(—t) dt (9.18)

=T T T e

The value K determines the relative importance of the direct- and reciprocal-space

summations. Like S, K is in units of A~ %,
The Fourier transform of [1 — ¢(r)]/r is given by

. 2
ﬁ[l_.i’@] - nn—wsn—Jr(_? L3 ES_)/rG’) (9.19)
e 27 2 K2 2

in which § is the reciprocal space coordinate, and the I' function is defined by
I(x, y) = J‘ t*"lexp(—t)dt (9.20)
y

where I'(x) = I'(x, 0).
The final result is (Williams 1971, 1981)

— 1 —n 2
T ar2) [j; 2 ajarT /2,4

+ VT3 N | Faa(H)PHI" T (—n/2 + 3/2,b%)
H#0

2
+ V—-lnn/anvs 2 [Z q,] . 2n~1nn/2Kn{Z qu}:l

n—3 cell cell

(9.21)

where a® = nK?r3 and b* = nH?/K?2.

In Eq. (9.21), the second summation is over lattice vectors H. The last two
terms of this equation represent the (000) term in the Fourier summation and the
self-energy correction. The latter describes the interaction of the point charge with
itself, which, as noted above, is included in the reciprocal space summation and
must therefore be subtracted.

Equation (9.21) can be written in terms of the complementary error function
ERFC(x), using I'(}) = =", I'(1,b%) = exp (—b?), and T}, a?) = \/rERFC(a),
where ERFC(x) is defined as

ERFC(x) = 2\ exp (—t?)dt (9.22)

TJx
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9.3.4 The Lattice Energy of a Crystal Consisting of
Spherical Tons

The electrostatic interaction energy between two spherical atoms or ions located
at A and B is the sum of the internuclear repulsions, the nucleus—electron
attractions, and the electron-electron repulsions (Su and Coppens 1995):

Eap = Epy — Z,®%A) — Z;®4(B) + E,, (9.23)
where
Z,Z
E,, =272 (9.24)
R
and R is the length of the vector R, connecting A and B; ®3(A4) is the electrostatic
potential at the nucleus A due to the electronic charge distribution B:

5 | PO
O%(4) = JIR - dr 9.25)
and, similarly,
p "(r)
®4B) = fl - rl (9.26)
while
A B
”' pr)p (rz)d r, dr, 9.27)
[Fy2]

9.3.4.1 Evaluation of the Internuclear
Repulsion and the Nuclear-Electronic
Attraction

For a nucleus at R;, the peripheral contribution to the potential @, due to a
spherical density component centered at R;, consists of a point-charge term and
a penetration term. The point-charge term is due to the nuclear charge at R; and
the electronic density within the sphere with radius |R; — R;|, centered on R;,
which passes through the nucleus i (Fig. 9.1). The penetration terms are due to
the electronic charge outside that sphere. They decay exponentially as the distance
R;; = |IR; — R;] increases (Hirshfeld and Rzotkiewicz 1974).

The electrostatic potential in a crystal of spherical atoms or ions is therefore
the sum of the electrostatic potential of a point-charge crystal and a penetration
correction. Only atoms for which the product of R;;{; is small contribute to the

FIG. 9.1 The sphere with radius {R; — R;| centered on nucleus j.
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penetration term, where {; is the radial exponent of the monopolar density centered
at R;.

For the point-charge contributions, the accelerated convergence expression,
Eq. (9.21), is used with the substitution, Eq. (9.22). The explicit expression for the
point-charge contribution is then (Bertaut 1952)

(Dpenpheral point charge(R ) —_ Z qle I 1ERFC(\/7-ZKR”)
j#i

4+ 1 V- 1 Z 'Flpooliar:l charge(H)H— 2
H=#0
2

—nH
xexp( 122 )exp(—2niH-R,-)—2Kq,- (9.28)

where FRointcharge() = 3 g, exp 2niH-R,), and g, is the total charge in the
sphere with radius R;; = |R; — R,|.

The rates at which the direct-space and the reciprocal-space parts of the lattice
sums converge are a function of the value of K. According to Williams (1981), the
choice of K = 0.3/a minimizes the total computation time in the case of NaCl
With a lower K value of ~0.2/a, the reciprocal sum can be neglected completely
because of the rapid decay of the exponential factor in the Fourier summation.
Generally, K can be chosen to be of the order of 0.1 A,

The penetration contribution to the electrostatic potential at R, is evaluated
by application of the general expression of Eq. (8.49) for ®P¢* for the spherical
density (I, = m, = 0). The point-charge term, proportional to 1/R;;, must sub-
sequently be subtracted. Due to the rapid decrease of the penetration terms with
increasing R;;, convergence is quickly achieved. For spherically averaged Hartree—
Fock atom densities, inclusion of penetration terms for atoms within 10 A of the
point under consideration is more than adequate.

9.3.4.2 Evaluation of the Electron—Electron
Repulsion

The electron—electron repulsion

JJP (r)p® (rz)dr1 ar, 9.29)

ryal
can be evaluated with the help of the Fourier convolution theorem, as defined by
expression (8.44).! For spherical densities, separated by a distance R, the result is
particularly simple, and given by (Spackman and Maslen 1986)

Egherieal = 4 fw J4(8) f5(8)jo(2nSR) dS (9:30)
0

where S = 2sin /4, and the spherical-atom scattering factor f, of the radial
density p,(r) is defined as

fa(8) = 4n Jrsz(r)jO(ZnSr) dr 9.31)

! In this case the Fourier convolution theorem is applied to a convolution of three functions.
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As discussed in Chapter 1 [Eq. (1.28)], the term V$EPerical may be evaluated
numerically with Eq. (9.30) using Gaussian quadrature (Press et al. 1986).

9.3.5 Application to the Lattice Energy of Alkali Halides

9.3.5.1 The Electrostatic Energy for the Point-Charge
and Overlapping-Ion Models

Sodium fluoride, NaF, is a favorable choice for X-ray analysis of the lattice energy
of an ionic crystal. Both Na and F are relatively light atoms, and the Na 3s-radial
distribution, though diffuse, is not quite as spread out as the Li 2s shell (single-{
values are 0.8358 and 0.6396 au ™!, respectively; see appendix F), and therefore
contributes to a larger number of reflections.

With K in the convergence function of Eq. (9.18) equal to 0.4 A~", the
accelerated convergence method reaches an accuracy of nine significant figures
with inclusion of only 1000 unit cells. By comparison, about 50,000 unit cells would
be required for a summation performed exclusively in direct space.

The point-charge model gives the electrostatic energy per NaF unit as
—0.402950 au. With E, ;. osmic = — K/a,% where a is the unit-cell edge at 0 K, and
the value of ay,r = 4.590 A = 8.674 au, this gives, as reported in the literature
(Glasser and Zucker 1980),

fnar = 3495129 (9.32)

For the unit-point-charge crystal, the absolute value of the electrostatic energy
is equal to the potential at the nuclear position. This potential will be equal for
both ions in the alkali halide structure, as their positions are equivalent; that is,

®(Na*)= —®(F ) = —0.4030 au (9.33)

For the crystal composed of ions, the equality given in Eq. (9.33) is no longer
valid, because the two ionic charge distributions, which partly shield the nuclear
charges, are different. For the free-ion crystal, the values of the potential at the
nuclear positions in NaF, evaluated according to Section 9.3.2, are

@""(Na*) = —0.3958 au
QP (F7) = +0.4034 au (9.34)

These values indicate that in the ionic crystal the effective charges, which act upon
immediate neighbors and some distance beyond, are larger than + 1 for the Na,
and less negative than —1 for the F ions. At large separations, the effective charges
will revert to +1 and —1.

2 Note that in part of the literature and in Eq. (9.12), the Madelung potential is defined such that
Fiowat uniccent = — /1, where r is the nearest distance between the cation and the anion. For the rock-salt
lattice, ' = p/2.
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The electrostatic energy for the free-ion crystal is —1120.5 kJ mol~!, com-
pared with —1058.0 kJ mol~?! for the point-charge crystal. But the ions in the
crystal are affected by their environment. According to the k-refinement of the
single-crystal AgKa data on NaF (Howard and Jones 1977), both the Na* and
F~ ions in the crystal are more contracted than the free ions, and the net charges
have magnitudes of 0.95 (1) e.? The electrostatic energy based on this distribution
is —1045.6 kJ mol !, remarkably close to that of the crude point-charge model.

The success of the point-charge model is to be attributed to the cancellation
of the effects of incomplete charge transfer and the interpenetration of the electron
shells of adjacent atoms. The electrostatic energy is increased by a factor of
(100/95)?, or about 10%, by the assumption of full charge transfer. But the neglect
of the spatial distribution of the electrons gives a larger electron—electron repulsion
for ten point-electrons on each nucleus than is the case for the spread-out real
density. The calculation shows that this destabilization is about 0.0247 au, or
65 kJ mole ™!, for the interaction between first neighbors alone, relative to the
experimental distribution in the crystal.

9.3.5.2 The Lattice Energy of NaF

A second major contributor or the lattice energy of an ionic crystal is the repulsive
energy. Following Born and Huang (1954), the repulsive energy per mole may be
written as

Ep = NyB'/r" (9.35)

The term B’ is a repulsive coefficient, which is evaluated from the equilibrium
condition

6(Eelt’,c:h'ostatic + Erep) —

ar

where r = a/2 is the nearest separation between the Na and F ions.

Using the point-charge expression E,.cyostatic = #/2r, and E, ., = B/,
one obtains B’ = "~ !/2n. Substitution in Eq. (9.35) gives, for the repulsive energy
per mole,

0 (9.36)

_ N
na

E

rep

(9.37)

The lattice energy is the sum of the electrostatic and repulsive energies, and
per mole is given by

U= Eeleclroslalic + Erep = _NAu/a(l - l/n) (938)

where N, is Avogadro’s number.

* To reduce the effect of extinction and to eliminate possible correlation between the charge density
and extinction parameters, the six strongest reflections were eliminated from the refinement. Because
the 3s shell of Na is barely populated, its x parameter cannot be refined separately in such a
refinement. In the NaF study, this problem was circumvented by assignment of a common « value to
the L and M shells of Na.
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TABLE 9.2 The Effective Madelung Constant u°, the Effective Born Coefficient n*' and
the Lattice Energy U (kJ mol ') for NaF According to Point-charge and Ionic Models

U — chp
eff eff eff Q
u w n Y U VA
+ 1 Point-charge 3495129 1.0000 7.370 —914.2 —-1.0
Free Hartree—Fock ions 37017 1.0591 7.015 —960.6 —-6.1
+0.95 Point-charge 31544 0.9025 8.058 —836.4 7.6
X-ray density 34543 0.9883 7.445 —9134 —-0.92

The Born coefficient n can be derived from the experiment bulk modulus
B = — V(dP/dV), where V is the volume and P is the pressure (Kittel 1966). With
the value By,r = 0.5143-10'2dyncm ™2 (Sangster and Atwood 1978), ny,r is
obtained as

18Br4
Fnar = ——0 + 1 =737 (9.39)

pq

Substitution in Eq. (9.38) gives, for the energy of the point-charge NaF lattice,

Ungint charge, naF = — 218.5 keal mol ™! (9.40)

p

as compared to the experimental value of —216.3 kcal mol™! (Sangster et al.
1978).

The lattice energy is defined relative to the unperturbed components of
the crystal. For an alkali halide crystal such as NaF, it is the difference between
the energy of the solid and the energy of the ions Na*(g) + F ~(g). Because the
real crystal contains incompletely charge-transferred ions, a correction term is
required in the calculation of the lattice energy based on the k-refinement results.
The correction is the difference between the energy of the 0.95¢~ charged ions
and the energy of fully charge-transferred particles. It equals —0.05 (Iy, + Ep),
where Iy, and Ep are the ionization energy of sodium and the electron affinity of
fluorine, respectively. With Iy, = 495.85kJ mol~ ! and Ep = —328.16 kJ mol !
(Lide 1993), this amounts to —8.38 kJ mol L.

The results for the three models are summarized in Table 9.2, which lists the

effective Madelung constant p*, defined by E.jecirosaic = — H/a; the effective
Born coefficient, defined by U = —N,u“"/a(l — 1/n*'"); and the lattice
energy U.

The discrepancy between the x-refinement results and the experimental value
for U is 0.92%,. The exact value of the lattice energy is very sensitive to the amount
of charge transfer. If the charge transfer is reduced by only one standard deviation
to 0.94 ¢, the agreement with the experimental lattice energy is within 0.12%.
Conversely, an increase by one standard deviation worsens the discrepancy.
Nevertheless, the agreement with the calorimetric lattice energy is satisfying, given
the simplicity of the treatment of the nonelectrostatic interactions.
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9.4 The Cohesive Energy of Molecular Crystals
9.4.1 Molecular Interactions

Short-range repulsive forces are a direct result of the Pauli exclusion principle
and are thus quantum mechanical in nature. Kitaigorodskii (1961) has
emphasized that such short-range repulsive forces play a major role in determining
the packing in molecular crystals. The size and shape of molecules is determined
by the repulsive forces, and the molecules pack as closely as is permitted by these
forces.

Repulsive forces determine, for example, the melting point of a solid. Whenever
the packing is efficient, the melting point tends to be high. The attractive forces,
on the other hand, govern the heat of vaporization and therefore the boiling point.
Trouton’s rule, which relates the normal boiling point of a liquid to its heat of
vaporization, is a manifestation of this relation.

Like the Coulombic forces, the van der Waals interactions decrease less rapidly
with increasing distance than the repulsive forces. They include interactions that
arise from the dipole moments induced by nearby charges and permanent dipoles,
as well as interactions between instantaneous dipole moments, referred to as
dispersion forces (Israelachvili 1992). Instantancous dipole moments can be
thought of as arising from the motions of the electrons. Even though the electron
probability distribution of a spherical atom has its center of gravity at the nuclear
position, at any very short instance the electron positions will generally not be
centered on the nucleus.

Quantitative treatment of the interaction between two identical Bohr atoms,
consisting of point electrons and nuclei, leads to an expression which, apart from
a numerical factor, is the same as that derived quantum-mechanically by London
(1937):

Cai 1
Egip(r) = — ;’6" = dndl/(4meo)” x (941)

Here, oy and I are the polarizability and the ionization energy of the atom,
respectively. The r® dependence is also encountered in the so-called Debye
interaction between a permanent dipole and an induced dipole, given by

1
EDebye(r) = H”ZQO/(47Z80)2 X F (942)

The dipole—dipole interactions, frequently referred to as Keesom interactions,
are historically included in the van der Waals interactions, even though they are
purely electrostatic. For molecules that are free to orient themselves, the dipole-
dipole interactions must be averaged over the molecular orientations, as the
angular dependence of the interaction energy is comparable to the Boltzmann
energy kg7 (Israclachvili 1992, p. 62). With the averaging of the Keesom
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interactions, the total van der Waals energy for two dissimilar bodies is given by
+

r6 r6 r6

E =
vDW
6

CVDW - _[CDebye + CKeesom Cdisp]

wips | el I,
3kgT 21, + 1)

= —[(uffxz + p30) + ] / (dmeo)’re (943)

When the interaction is expressed in terms of pairwise atom—atom potential
functions, all three components of the van der Waals interactions are grouped
together because of their common r~° distance dependence. A repulsive term is
added, while Coulombic interactions may be accounted for separately. In the
expression due to Lennard-Jones, the repulsion has an r~!2? dependence, to give
the pairwise potential function

E(r)= Ar > — BrS (9.44)

in which A and B are specific for the type of atoms.
Alternatively, the repulsion is frequently described by an exponential term, or

E(r) = Ae™® — Cr~® (9.45)

in which 4, B, and C are, again, element specific.

For interactions between unlike atoms i and j, the coefficients A4, B, and C
can be derived from the coefficients of the homoatomic interactions by approxi-
mately valid combining rules, defined as

E(r) = J(4:4)) exp[ — /(BB))r] — J(C,C))r™° (9:46)

The interaction energy between two molecules or molecular fragments is
obtained as a sum over all pairwise atom—atom interactions. The atom—atom
potential expressions implicitly assume that the interactions are two-body interac-
tions, undisturbed by other bodies in the vicinity, and that they are isotropic about
the atomic centers.

The pairwise interaction may be obtained using density functional theory. Let
p4 and pg be the density for individual A4 and B subsystems. In terms of density
functional theory, the interaction energy E ,g consists of correlation, kinetic energy,
and exchange and electrostatic contributions, or

AE = EAB. total EA.lotal - EB. total
= {y f{pABt(pAB) — pat(pa) — pat(pp)} dr —c, j{pABexc(pAB)

- pAexc(pA) - pBexc(pB)} dr + AEeleclroslalic + Ecorr(pAB) - Ecorr(pA)
- Ecorr(pﬂ) (947)
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F1G. 9.2 Nonbonded potential for O—O. Broken line: according to the Gordon—Kim

density functional model augmented with an attractive potential (Spackman 1986). Full

line: empirical curve based on a fit to oxohydrocarbon crystal structures (Cox et al.
1981).

in which AE, . osac TeDresents the Coulombic interactions, and the Thomas—
Fermi-Dirac model [Eqgs. (9.7) and (9.8)] has been used.*

This is the Gordon-Kim (1972) model. A number of applications have
demonstrated that the Gordon-Kim model leads to a qualitatively valid descrip-
tion of potential energy surfaces between closed-shell subsystems. Spackman
(1986a) has used the Gordon—-Kim model, with an empirical scaling parameter
for the exchange contribution, to derive a set of short-range repulsive potentials
for homoatomic pairs up to the element krypton. The resulting potentials are
complemented with an attractive r ~° term representing the dispersion forces.

The Gordon-Kim interaction functions may be compared with empirical
potential functions derived by energy- or net-force minimization methods using
known crystal structures. The O—O Gordon—Kim potentials are more repulsive,
as illustrated in Fig. 9.2. Spackman points out that the empirical potentials likely
contain a significant attractive component because of the inadequate allowance
for electrostatic interactions in their derivation. This attractive component is
included in the electrostatic interaction in the density functional model.

The application of the Gordon—Kim model to open-shell systems, which must
include the interaction between unpaired spins, appears less successful (Kim and
Gordon 1974).

Expressions of the forms in Egs. (9.45) and (9.46) have been extremely useful
in molecular modeling studies. An extensive literature exists on the choice of

4 Note that in this equation an extra term is included to account for correlation energy. The term is
derived from the topology of p.
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coefficients and on the application of the expressions in structure calculations
(Wampler 1994, Cornell et al. 1995).

9.4.2 Interactions Between Molecules in Crystals

Like the interaction energy between two molecules, the total lattice energy of a
molecular crystal contains several contributions from the different types of
interactions, We may write

Umolecular = Erepulsive + Eelecxroslatic + EDebye + Edispersion (948)

In this expression, the dipole—dipole interactions are included in the electro-
static term rather than in the van der Waals interactions as in Eq. (9.43). Of the
four contributions, the electrostatic energy can be derived directly from the
charge distribution. As discussed in section 9.2, information on the nonelectrostatic
terms can be deduced indirectly from the charge density. The polarizability «,
which occurs in the expressions for the Debye and dispersion terms of Egs. (9.41)
and (9.42), can be expressed as a functional of the density (Matsuzawa and
Dixon 1994), and also obtained from the quadrupole moments of the experimental
charge density distribution (see section 12.3.2). However, most frequently, empiri-
cal atom-atom pair potential functions like Eqs. (9.45) and (9.46) are used in
the calculation of the nonelectrostatic contributions to the intermolecular interac-
tions.

9.4.2.1 Hydrogen-bonding

Hydrogen-bonding is one of the prime interactions determining the packing motif
in molecular crystals. As discussed in section 12.3.3, topological analysis of the
total charge distribution indicates normal hydrogen-bonding to be a closed-shell
interaction, with a very low density at the critical point, and V?p at the critical
point being invariably positive. But for very short hydrogen-bonds, covalent
contributions will be of increasing importance. Nevertheless, simple electrostatic
models can to a large extent explain the energetics of hydrogen-bond formation.
In the work of Spackman (1986b), hydrogen-bonding is accounted for by
electrostatic forces, combined with the omission of the repulsive term in the
hydrogen-acceptor interaction.

9.4.3 Expressions for the Evaluation of the Electrostatic Contribution
to the Lattice Energy of Molecular Crystals

The electrostatic energy of a molecular crystal can be evaluated with summation
over the structure factors in Eq. (9.15). But to obtain the cohesive energy of a
molecular crystal with such a summation, we would have to subtract the molecular
electrostatic energies, which are implicitly included in the result. An alternative
is to perform the calculation in direct space.

With the molecular densities p, and pg obtained with one of the partitioning
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methods discussed in chapter 6, the electrostatic interaction energy is given by

Enice,es = 3. f P ’z(r)p ’r‘()r drdr (9.49)
r —_—

where A stands for a unique central molecule, and B represents the molecules in
the remainder of the crystal. If there is more than one molecule in the asymmetric
unit, a term for the interaction of each additional molecule, A’, with its environ-
ment, is to be added. The doubly counted A-A' interactions must be subtracted.

Expression (9.49) can be evaluated by substituting the expression for the
potential in terms of the charge distribution [Eq. (8.2)], which gives

Ela!lice. es — Z ‘[d)A(r)pB(r) dr (950)
B

For a slowly varying charge distribution, the potential can be expanded in a
Taylor series with ®(0), the potential at the origin of the distribution B, as leading
term (Buckingham 1959, 1970, 1978; Jackson 1974):

0* (0 *®(0
o) = &0 +r-VeO) + 3 ZZ K ; ) Ezz;r‘r’r“ o, 6r((3)r
i k

9.51)

Since, following Eq. (8.4), —V® is the external field E, Eq. (9.51) can also be
written as

O(r) = ®0) — r-E(0) — ZZ’-’~—j—-ZZZ.,k S (9.52)

i

aak

As we are evaluating the potential at a point outside the distribution A, the
Poisson equation gives —V?*® = V-E = Y, (8E,/dr,) = 0. Expression (9.52) is
therefore equivalent to

®(0) — r-E(0) — éz S Grry - r26y) % b

=®0) —r- E(O)—'ZZG‘_Iszzg

(9.53)

6r ark N

using the definitions for @ and Q given in Eq. (7.2), and the caret above the letters
indicating the corresponding operator.

To obtain the interaction energy, Eq. (9.53) is substituted into Eq. (9.50).
When the charge density B is expressed in terms of one or more spherical harmonic
expansions, only terms of like symmetry will integrate to nonzero values, and we
obtain the expression for the interaction between two distributions as

Ees = q(I)o - luaEa - %G)mﬂE;ﬂ - ll—SQaﬂ}'E;/];' +oee (954)
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or, in terms of the atom-centered multipole expansions and explicit notation for
the summations,

Ees = Z qj(DO - :uszaj - %Qaﬂ ;ﬁj - Tlggaﬂyj ;Iliyj +- (955)
J

in which the sum j is over all atomic centers, and E' and E” are the first and
second derivatives of the components of E.

To evaluate this expression for distributions expressed in terms of their
multipolar density functions, the potential ® and its derivatives must be expressed
in terms of the multipole moments. The expression for ® outside a charge
distribution has been given in chapter 8 [Eq. (8.54)]. Since the potential
and its derivatives are additive, a sum over the contributions of the atom-
centered multipoles is again used. The resulting equation contains all pairwise
interactions between the moments of the distributions 4 and B, and is listed in
appendix J.

9.4.4 Calculated Lattice Energies of Molecular Crystals

It is evident that the electrostatic interactions constitute a major component of
the lattice energy of ionic crystals. According the treatment for NaF described
above, the ratio of absolute values of the electrostatic and repulsive forces to the
lattice energy is 1:1/n, where n is the Born coefficient. With n*™f = 7.445 (Table
9.2), the electrostatic contribution is = 115%; of the total interaction energy. On the
other hand, for small nonpolar molecules in the gas phase and dipole—dipole
interactions averaged over all mutual orientations, the dispersion forces contribute
90-100%, of the interaction (Israelachvili 1992, p. 95).

In molecular crystals, the relative importance of the electrostatic, repulsive,
and van de Waals interactions is strongly dependent on the nature of the molecule.
Nevertheless, in many studies the lattice energy of molecular crystals is simply
evaluated with the exp-6 model of Eq. (9.45), which in principle accounts for the
van der Waals and repulsive interaction only. As underlined by Desiraju (1989),
this formalism may give an approximate description, but it ignores many
structure-defining interactions which are electrostatic in nature. The electrostatic
interactions have a much more complex angular dependence than the pairwise
atom-atom potential functions, and are thus important in defining the structure
that actually occurs.

Hirshfeld and Mirsky (1979) evaluated the relative contributions to the lattice
energy for the crystal structures of acetylene, carbon dioxide, and cyanogen, using
theoretical charge distributions. Local charge, dipole and quadrupole moments
are used in the evaluation of the electrostatic interactions. When the unit cell
dimensions are allowed to vary, inclusion of the electrostatic forces causes an
appreciable contraction of the cell. In this study, the contributions of the
electrostatic and van der Waals interactions to the lattice energy are found to be
of comparable magnitude.

Spackman et al. (1988) have used experimental charge densities to sum
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FIG. 9.3 Relative contribution of electrostatic interactions to the total lattice energy for a
number of molecular crystals. Source: Coombes and Price (1995).

interactions between electrostatic atomic moments up to and including octupoles.’
Repulsion and dispersion terms are calculated with the parameters based on the
Gordon-Kim model as described above. Crystals analyzed include those of urea,
imidazole, cytosine monohydrate, and 9-methyl adenine. For a pairwise molecule—
molecule interaction in cytosine including two hydrogen bonds, the interaction
energy is found to be —75 (27) kJ mol™!, compared with —57.4 kJ mol ™! from
a theoretical calculation of the dimer in the same configuration. The crystal lattice
energy of urea is estimated as — 66 (24) kJ mol "}, in quite reasonable agreement
with the value of —93 (6) kJ mol~! derived from the experimental sublimation
energy.

A systematic analysis of the electrostatic interactions in the crystals of 40
rigid organic molecules was undertaken by Price and coworkers (D. S. Coombes
et al. 1996). In this work, distributed (i.e., local) multipoles up to hexadecapoles,
obtained from SCF calculations with 6-31G** basis sets, scaled by a factor of 0.9
to allow for the omission of electron correlation, are used in the evaluation of the
electrostatic interactions. The experimental lattice constants and structures are
reproduced successfully, the former to within a few percent of the experimental

* Note that in Spackman (1986b), the energy is subdivided in contributions labeled as electrostatic,
penetration, repulsion, and dispersive terms. The first two of these are due to electrostatic interactions.
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values. In agreement with the statement by Desiraju (1989), very poor resuits are
obtained when the multipolar electrostatic interactions are neglected, confirming
that electrostatic forces dominate the anisotropy of the intermolecular interactions
(Hurst et al. 1986). Though experimental lattice energies from heats of sublimation
are generally not known with very good accuracy, many of the lattice energies are
predicted within ~ 15 kJ mol~'; but lattice energies of hydrogen-bonded crystals
tend to be underestimated.

Of interest is the relative contribution of the electrostatic interactions to the
total calculated lattice energy. Some of the results are reproduced in Fig. 9.3
(Coombes and Price 1995). It is clear that the contribution increases rapidly for
the more polar molecules, and can be pronounced. For formamide, the electrostatic
contribution is more than 100%, of the lattice energy, as the repulsive and the van
der Waals r~¢ forces are of approximately equal magnitude and sum to a small,
opposite, contribution.

Several issues remain to be addressed. The effect of the mutual penetration
of the electron distributions should be analyzed, whiie the use of theoretical
densities on isolated molecules does not take into account the induced polarization
of the molecular charge distribution in a crystal. In the caiculations by Coombes
et al. (1996), the effect of electron correlation on the isolated molecule density is
approximately accounted for by a scaling of the electrostatic contributions by a
factor of 0.9. Some of these effects are in opposite directions and may roughly
cancel. As pointed out by Price and coworkers, lattice energy calculations based
on the average static structure ignore the dynamical aspects of the molecular
crystal. However, the necessity to include electrostatic interactions in lattice energy
calculations of molecular crystals is evident and has been established unequivocally.
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Charge Density Studies of Transition
Metal Compounds

10.1 The Study of Transition Metal Complexes

The electron density in transition metal complexes is of unusual interest. The
chemistry of transition metal compounds is of relevance for catalysis, for solid-state
properties, and for a large number of key biological processes. The importance of
transition-metal-based materials needs no further mention after the discovery of
the high-Tc superconducting cuprates, the properties of which depend critically
on the electronic structure in the CuO, planes.

The results of theoretical calculations of systems with a large number of
electrons can be ambiguous because of the approximations involved and the
frequent occurrence of low-lying excited states. The X-ray charge densities
provide independent evidence from a technique with very different strengths and
weaknesses, and thus can make significant contributions to our understanding of
the properties of transition-metal-containing molecules and solids.

In inorganic and organometallic solids, the average electron concentration
tends to be high. This means that absorption and extinction effects can be severe,
and that the use of hard radiation and very small crystals is frequently essential.
Needless to say that the advent of synchrotron radiation has been most helpful
in this respect. The weaker contribution of valence electrons compared with the
scattering of first-row-atom-only solids implies that great care must be taken
during data collection in order to obtain reliable information on the valence
electron distribution.

211
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10.2 On the Electronic Structure of Transition Metal Atoms
10.2.1 Crystal Field Splitting of d Orbitals

When the field exerted by the atomic environment is not spherically symmetric,
as is the case in any crystal, the degeneracy of the d-electron orbitals is lifted. In
the electrostatic crystal field theory, originally developed by Bethe (1929) and Van
Vleck (1932), all interactions between the transition metal atom and its ligands are
treated electrostatically, and covalent bonding is neglected. Since the ligands are
almost always negatively charged, electrons in orbitals pointing towards the
ligands are repelied more strongly, and the corresponding orbitals will be higher
in energy. The discussion is the simplest for the one d-electron case, in which d—-d
electron repulsions are absent.

For a cubic field exerted by ligands along the x, y, and z axes, the d? and
d,»_ . orbitals are destabilized relative to the d,, d,,, and d,, orbitals. The d,. and
d,>_,. orbitals form the basis for the ¢, representation of the cubic point group,
and are therefore referred to as e, orbitals, while the d,, d,,, and d,, orbitals are
t,, orbitals, which transform like the t,, representation. The magnitude of the
splitting between the e, and the t,, orbitals depends on the strength of the field.
For an array of point charges, it can be evaluated by a simple electrostatic
calculation. For the detailed calculation, the reader is referred to texts on the
subject (Sugano et al. 1970, Ballhausen 1962).

The splitting is expressed in units of Dq, where D depends on the magnitude
and distance of the ligand charges, and q on the radial extent of the d-electron
functions on the central atom. The total splitting is defined as A = 10 Dq. Since
the splitting does not affect the energy averaged over the levels, the two ¢, orbitals
are destabilized by 3/5A, =6 Dq, and the three t,, orbitals are stabilized by
2/5A =4 Dq, relative to the d-orbital energy in the average spherical field (Fig. 10.1).

In a tetrahedral field the splitting is reversed as the ligands are now located
in directions away from the cubic axes, rather than along the axes. In a
square-planar (D,,) field, further splitting occurs (Fig. 10.1). The relative ordering
of the levels is strongly dependent on the nature of the coordination. If the axial
ligand is absent, or weak electrostatically, the d_. orbital in the D,, complex will
be more stabilized than shown in the figure.

In the trigonal point group 3, the axis of quantization is chosen along the
three-fold axis, while the x and y axes may be selected anywhere in the plane
perpendicular to the z axis. In the point group 3m, which occurs for many distorted
octahedral complexes, there are also vertical mirror planes. The relation to the
cubic axes is described by the transformation

X \/% _\/—% 0 Xe
vl={ V& V& V3l (10.1)
& 1 A

Since this transformation is unitary, it applies to both the axes and the
coordinates x, y, and z. The new z axis along the body diagonal of the cube,

V4

(4
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FIG. 10.1 Schematic drawing of the splitting of the d-electron levels in: (a) an octahedral
field, (b) a tetrahedral field, and (c) a square-planar field. The size of the splittings and
the relative values of A, @,, and Q, depend on the interatomic distances and the nature
of the ligands.

which is the three-fold axis. In the case of the point group 3m, x is perpendicular
to one of the vertical mirror planes, while y lies within one of the vertical mirror
planes.

In point group 3 (C; in spectroscopic notation), z2 belongs to the representation
a, and the pairs yz, xz, and xy, and x? — y? to the double degenerate representation
e,; in other words, the levels can be classified as a,, ¢,, and e,. On the lowering
of the symmetry from cubic to trigonal, the t,, orbitals split into the single a, and
a double degenerate ¢, level, while the e, orbitals retain their symmetry characteris-
tic (Fig. 10.2). Since the two sets of e, orbitals belong to the same representation
of the point group, they can be combined by a unitary transformation to give
different sets of e, orbitals. The symmetry-adapted set that correlates with the
octahedral orbitals consists of combinations of x* — y? with xy, and of xz with
yz. They are given by (Ballhausen 1962)

ay, =d,

egr =/3de = hds

e, =/3dy, + /3d,, (10.2)
ey =3+ 3d,

e-=}dy — /34,

The pseudo-octahedral e, orbitals of Eq. (10.2) have z components, so they
are lifted out of the xy plane.

For a transition metal element with more than one d electron, the atomic
energy levels are more complex. As the electrons interact with each other, the
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FIG. 10.2 Diagram showing the d orbitals in an octahedral field and the splitting of the
t,, orbitals that occurs upon trigonal distortion.
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FIG. 10.3 Energy levels arising from the e? electron configuration.

energy levels are dependent on the filling of the levels. As an example, the e?
electron configuration splits into three atomic levels, two of which are singlets and
one is a triplet level (Fig. 10.3). In the singlet 'E level, both electrons are in the
same e orbital, while in the A4, and 34, levels, the electrons are distributed over
the two different e orbitals, resulting in different energies. The electron distributions
are, of course, different for the 4 and E levels, so a distinction can be made if
the charge distribution is known with sufficient accuracy. The difference between
the charge density distributions of the ' 4, and 34, levels is much smaller, but the
spin density distribution, which can be measured with polarized neutron experi-
ments on spin-oriented materials, is dramatically different.

10.2.2 Effect of Covalency on the Orbital Populations

The electrostatic theory of the preceding section is the starting point for a more
complete treatment of the bonding in transition metal complexes, in which the
covalency of the interactions is taken into account.

The metal valence orbitals combine with linear combinations of ligand orbitals
of the same symmetry to give symmetry-adapted molecular orbitals. A schematic
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FIG. 10.4 The molecular orbitals of an octahedral MLy complex where L is an arbitrary
o-donor ligand. Source: Albright et al. (1985).

level diagram of an octahedral complex with g-metal-ligand bonding is shown in
Fig. 10.4. On the left are the metal orbitals, and on the right the symmetric
combinations of the ligand orbitals. The t,, metal orbitals are unaffected because
no linear combinations of g-ligand orbitals with the same symmetry exist. The
crystal-field-destabilized e, orbitals combine with the ligands to give a lower-lying
bonding MO and a high-lying antibonding MO. Since the ligand orbitals are of
lower energy, the occupied lower orbital will have mainly, but not solely, ligand
character, that is, ¢, > ¢, in x = ¢; ¢34 + €3 Pjigana- The covalent bonding therefore
results in a partial population of the crystal-field-destabilized transition metal
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orbitais. The size of this population is a measure of the importance of covalent
bonding and of the relative energy of the ¢;, and ¢,,,,4 orbitals in the LCAO
expression. If the ligand orbital is much lower in energy, the bonding will be
weaker, and the g-donation into the metal atomic orbital will be less important.

If the transition metal atom has more than the six d electrons indicated on
the diagram, the antibonding 2e¢, molecular orbitals will also be populated and
the metal-ligand bonding will be weakened. An example of this quite-prevalent
effect is encountered in the series FeS,, CoS,, NiS,, discussed in section 10.4.2.

The crystal-field-stabilized metal orbitals can combine with empty n orbitals
on suitable ligands, leading to n-bonding, which is not included in Fig. 10.4. Since
the ligand orbitals participating in this molecular orbital are generally empty,
electrons are transferred to the ligands by so-called n-back-donation. This effect
will lead to a lower population than predicted electrostatically for the crystal-field-
stabilized metal orbitals, and, if the donation is into a ligand antibonding orbital,
it leads to a lengthening of the bond on the ligand.

10.2.3 The Relation Between the Occupancies of
Transition-Metal Valence Orbitals and the
Mutitipole Population Parameters

In general, the atom-centered density model functions describe both the one-center
valence density and the two-center density resuiting from overlap of the valence
orbitals. In the case of transition metal complexes, the overlap density in the
metal-ligand bond is frequently quite small. An ab-initio theoretical calculation
of the cobalt—porphine complex with a Co—N distance of 1.987 A, for instance,
gives, for the 24, ground-state, 6- and n-metal-ligand overlap populations of 0.02
and 0.04 ¢, respectively (Kashiwagi et al. 1978). This means that we can equate,
to a good approximation, the multipolar density centered on the transition metal
atom with the population of the outer valence shells of the atom.

If ¢(d;) is the atomic d-orbital basis set, the 3d density can be written as

pa= 2. 2 Pp(d)od)) (10.3)
iz

The cross terms ¢(d;)¢(d;), with i # j in Eq. (10.3) do not appear in the case
of the isolated atom for which the electron density is the sum of the square of the
atomic orbitals. In the molecular case, the cross terms will only be nonzero for
orbitals belonging to the same representation of the point group of the molecule,
like the e, orbitals in the case of trigonal site symmetry discussed above. In the
square-planar point group D,,(4/m mm), the orbitals have a,,, b,,, b,,, and ¢,
symmetry, and no such mixing occurs.

We recall that in the multipolar expansion, the 3d density is expressed in
terms of the density-normalized spherical harmonic functions d,,, as

Lmax i
pa= Y KPR(KT) Y Y Pinpim(¥/1) (10.4)
1=0 m=0 p

Since the d orbitals are invariant with respect to inversion through the nuclear
position, only ! even terms will occur in this summation.
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Equating Egs. (10.3) and (10.4) leads to an especially simple expression if the
radial dependence of the density is equal in both descriptions. In this case, the
radial parts cancel and we obtain

P;Y =P, di, (10.5)

Here, Y;; is the 15-element column vector of the angular part of the ¢(d;)d(d;)
orbital products, P;; is the row vector of the 15 unique elements of the symmetric
5 x 5 matrix of the coefficients in Eq. (10.3), and P, is the row vector containing
the coefficients of the 15 spherical harmonic density functions d,,,, with | = 0, 2,
or 4. Density functions with other / values do not contribute to the d-orbital
density.

The spherical harmonic functions constitute a complete set of functions in the
spherical point group. A product of two spherical harmonics such as y,y; must
therefore be a linear combination of spherical harmonic functions. An example of
such an expression is

Y20V20 = 0.241 79554y, + 0.18022375y,, + 0.282094 79y,  (10.6a)

For our purpose, it is preferable to express the right-hand side of this
equation in terms of the spherical harmonic density functions. Use of the ratio of
orbital- and density-function normalization factors gives the result

V20V20 = 0.36848d,, + 0.27493d,0 + 1.0d,, (10.6b)

Expression (10.6) shows that the product of two identical d,. orbitals contains
hexadecapolar, quadrupolar, and monopolar density functions. The product
equations can, in general, be written as Y;; = Ld,,,,. The clements of the matrix L
are the coeflicients in expressions like Eq. (10.6). A complete set of the equations
for [ < 2 is given in Table E.3 of appendix E.

The equivalence for the density in Eq. (10.5) can then be written as

P;Y;; = P;Ld,,, = P, d,,, (10.7)
We obtain, for the relation between the coefficients P; and P,,,,
P, = B;L (10.8a)
or
Pl = LTPf = MP], (10.8b)

The d-orbital occupancies are derived from the experimental multipole
populations by the inverse expression (Holladay et al. 1983)

Pl =M'P], (10.9)

The matrix M ™! is given in appendix L. In all but triclinic point groups,
site-symmetry restrictions limit the allowed functions beyond the ! even require-
ment. The symmetry-allowed multipolar density functions are given by the
“index-picking” rules of appendix D, section D.3, and are listed in Table 10.1.

The M ™! matrices specific for higher point groups are obtained by omission
of symmetry-forbidden columns in the full 15 x 15 matrix. This leads to rows
with zero elements for the nonallowed cross products between d orbitals, which
are subsequently omitted to recover a reduced matrix. The matrix for the point
group D,, = 4/m mm is shown as an example in Table 10.2.
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TABLE 10.1 Symmetry-Allowed Multipole Functions Describing d-Orbital Density

Point Group Aliowed Values of [, m, of M~ ia Dimension of M

LT [=0,2,4,allm 15 x 15

2. m, 2/m 00, 20. 22+, 22—,40,42+,42—, 44+, 44~ 9x9

222, m2m, mimm 00, 20, 22+, 40, 42+, 44 + 6 x6

4, 4/m, & 00, 20, 40, 44 +, 44— 5x5(4x4)p
422, 82m, 4mm, 4/mmm 00, 20, 40, 44 + 4 x4

3,3 00, 20, 40,43+, 43— S5x5(4 x4)»°
32, 3m, 3Im 00, 20, 40, 43 + 4 %4

6,6, 6/m, 622, 6mm, 6 m2, 6/mmm 00, 20, 40 3x3

23, m3, 432, 43m, m3m 00, 0.78245 (40+) + 0.57939 (44 +)° 2x?2

 Principle symmetry axis is z axis.
* Dimension can be reduced by rotation of coordinate system; see text.
¢ This function is usually described as the cubic harmonic K, (see appendix D).

10.2.3.1 The Relationships in Terms of
Symmetry-Adapted Orbitals

For the point group D,,, the atomic d-orbital functions belong to four different
group-theoretical representations. When the same representation occurs more than
once, as it does, for example, in trigonal point groups, M~! will contain cross
terms between orbitals of the same symmetry, as shown in Table 10.3(a). In this
case, we are interested in the population of the symmetry-adapted orbitals y;,
such as defined for the trigonal case by expression (10.2). The symmetry-adapted
orbitals are linear combinations of the original functions, that is,

Yk = zckiyi (10.10)

while the density products are given by

Yivi= Z_chicljyiyj (10.11)
i
The populations Pj, of the symmetry-adapted orbital products follow, in
analogy to Eq. (10.7), from

kl - lepdlmp

TABLE 10.2 The Matrix M~ !, Defining Orbital-Multipole Relations, for the Point
Group Dy,

Description Pyo P Py Pass
Py z? dy, 0.200 1.039 1.396 0.00
Py s, Py xz, yz e, e, 0.200 0.520 —0.931 0.00
Py, x? — y? by, 0.200 -1.039 0.233 1.570
Py, Xy by, 0.200 —1.039 0.233 —1.570

Source: Coppens and Becker (1992).
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TABLE 10.3 The Matrix M~ for Trigonal Point Groups

(a) In terms of d-orbital products

Pyo Py Pio Pass Py
Py 0.200 1.039 1.396 0.00 0.00
Py. 0.200 0.520 —0.931 0.00 0.00
P 0.200 0.520 ~0.931 0.00 0.00
P,,. 0.200 —1.039 0.233 0.00 0.00
P, 0.200 —~1.039 0.233 0.00 0.00
Pyysiae 0.00 0.00 0.00 2.094 0.00
Pyisiaa- 0.00 0.00 0.00 0.00 2094
Pyyrazs 0.00 0.00 0.00 0.00 2.094
Py paa- 0.00 0.00 0.00 —2.094 0.00

(b) In terms of products of symmetry-adapted orbitals*®

POO PZO P40 P43 +
P(a,,) 0.200 1.039 1.396 0.00
P(e,) 0.400 ~1.039 —0310 1975
P(e)) 0.400 0.00 —1.087 1975
Ple,. €} + e, €, ) 0.00 2942 2.193 1397

* The orbital expressions are given in Eq. (10.2).
® The signs given here imply a positive e, lobe in the positive xz quadrant; the coordinate system should be defined
such that this lobe points towards a ligand atom.

or, following the derivation given above,
n=@HPL, =MT'P], (10.12)

The elements of L* are obtained as linear combinations of expressions of the
type of Eq. (10.6), using the product of coefficients from the expansion of Eq.
(10.11). The results for the trigonal point groups (3, 3, 32, 3m, 3m) are illustrated
in Table 10.3(b). For exact cubic symmetry, the cross term P(e,, e;) =0, and
P(e;) = 2P(a,).

In the symmetry-adapted formulation, the P,; _ term no longer occurs because
the d-orbital density contains a vertical mirror plane even if such a plane is absent
in the point group. This is illustrated as follows. Point groups without vertical
mirror planes differ from those with vertical mirror planes by the occurrence of
both d,,, and d,,, _ functions, with m being restricted to n, the order of the rotation
axis. But the coordinate system can be rotated around the main symmetry axis
such that P,,_ becomes zerd. As proof, we write the ¢ dependence as

p(¢') = B, cosng + P, _ sin nop (10.13)
which has the maxima and minima for
op/0p = —nP,,, sinne + nP,_cosnp =0 (10.14)

or, tan np = B,_/P,..
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Thus, a rotation of the coordinate system by
1
@0 =—tan" (P, /Py,.) (10.15)
n

eliminates the antisymmetric component sin ng represented by d,, _. In the new
coordinate system, the ¢ dependence is

plp') = P, cos ne (10.16a)
with
P;n+ = Pln+ Cos n(pO + I)In— Sin n(pO = (P12n+ + P’Izn—)l/2 (1016b)
and
P, =0 (10.16¢)
or, conversely,
Pln— = P;n+ sin Qg Pln+ = P;n+ COS nQo (1017)

In the new coordinate system, the x axis coincides with one of the vertical
mirror planes of the density, reducing the size of M™! from 5 x 5to 4 x 4.

Application of the transformation of Eq. (10.15) to tetragonal and trigonal
point groups reduces the number of distinct sets of point groups in Table 10.1
from nine to seven.

10.3 The Electric Field Gradient at the Nucleus of a Transition
Metal Atom

10.3.1 Electric Field Gradient Expressions for
Transition Metal Elements

For transition metal atoms, the dominant contribution to the electric field gradient
at a nucleus originates in the valence shell centered on that nucleus. The
expressions for this central contribution are given in Eq. (8.43) for Slater-type,
exponential, density functions, defined as in Eq. (3.34):

ni+3

R/(r) = * (kr)™V exp (—Klr) (10.18)

(m + 2!

Expressions (8.43) for the elements of the traceless quadrupole tensor can be
written in a slightly different form as

VE, = +3/5)mPyz4 — 3'2Py)0Q,
VE, = —(3/5)(nPys, + 3'2P,0)Q,
VE,. = +(6/5)3'?P)Q,
VE, = +(3/5)(nPy; )0,
VE,. = +(3/5)nP;,,)Q,
VE,, = +(3/5)(nPy,_)0Q,

(10.19)
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where Q, is the expectation value of r~3 defined as
Q, =<y =j (R(r)/r) dr (10.20)
0

Substitution of Eq. (10.18) in Eq. (10.20), with the value of n(2) in Eq. (10.18)
equal to 4 for 3d valence-shell density functions of first-row transition metal atoms
(chapter 3), gives®

Q. = (k0)*/[ny(ny + D(ny + )] = (x0)*/120 (10.21)

The value of Q, is sensitive to the nature of the radial function. The Q, for
the radial dependence of the Hartree—Fock isolated atom function can be
evaluated analytically using the Clementi—Roetti Slater-type expansions, defined
by expression (8.38) (Clementi and Roetti 1974), The result is a weighted sum over
terms of the type (x0)3/[n,(n, + 1)(n, + 2)], each with the appropriate expansion
coefficient. For the isolated Fe atom, one obtains

Q,(Fe) = 4978 au™? (10.22)

For comparison, the crude “best single {” value of Clementi and Raimondi
(1963) for the Fe (3d) orbital is 3.7266 au~! (appendix F), or, for the orbital
exponent of the density function, { =7.4532 au™!. This gives, with Eq. (10.21), a
value of 3.4502 au 3, illustrating the strong dependence of Q, on the quality of
the radial functions.

Marathe and Trautwein (1983) quote values of 5.09 and 5.73 au™? from
Hartree—Fock calculations on Fe?* (3d°) and Fe®* (3d°), respectively, showing
that the radial contraction (i.e., the x parameter in the diffraction formalism) has
a pronounced effect on the {r™3);, values.

For atoms in sites of low symmetry, the EFG tensor must be diagonalized to
obtain its principal components VE;;. Since the tensor as defined by Eq. (8.9) is
traceless, two values will define all three principal elements. They are commonly
chosen as VEj;;, the principal component with the largest magnitude, and the
asymmetry parameter § = |VE,, — VE,,|/|VE;5|, which has the range 0 < < 1.

10.3.2 Comparison with Results from Mdssbauer
Spectroscopy

For a number of nuclei, the electric field gradient at the nucleus can be obtained
very accurately from spectroscopic measurements using Mdssbauer or magnetic
resonance techniques as mentioned in chapter 8.

Moéssbauer spectroscopy is based on transition between energy levels of nuclei
with different values of the nuclear spin quantum number I. When a nucleus emits
a y-ray, the energy of the emitted radiation is lowered by the recoil of the nucleus.
Conversely, the energy needed for absorption is higher than that needed for
transition, because the absorbing nucleus absorbs energy in the recoil process. For
nuclei tightly bound in solids, however, the effective mass of the emitter and

! Using the standard integral { x"e ™ *“dx = ntp " 1,
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absorber is that of the crystal, and recoil effects are absent for most of the emitting
and absorbing nuclei. Under such conditions, the energy emitted by a nucleus can
be absorbed by an identical nucleus exposed to the emitted radiation.

The °"Fe nucleus has two levels with nuclear spin quantum numbers I = 1,2
and I = 3/2. The nuclear energy levels for a given nucleus are slightly affected by
three types of interactions which are: (1) the interaction between the electron
density at the nucleus and the positive nuclear charge, (2) quadrupole interactions
between the electric field gradient of the charge distribution and the nuclear
quadrupole moment, and (3) magnetic interactions. To record such changes it
must be possible to vary the energy of the incoming radiation.

In Mossbauer spectroscopy, an energy range is obtained by Doppler shifting.
By moving the source relative to the sample, the energy of the y-rays can be varied
over the range of energy differences arising from the interactions with the
environment.

The relation between the velocity of the emitter and the energy shift of the
emitted electromagnetic radiation is given by the Doppler expression

AE, = Av E (10.23)
c 7
where c is the speed of light. Thus, for a °’Fe nuclear emitter with E, =144 keV,
a velocity of 1 mms™' corresponds to a shift of 4.80-10" 8¢V, or 7.69-10727 J.
The difference of the nuclear transitions in the Fe®* cation, and the hexacoordinated
Fe atom in Fe[Fe(CN)] is 2-10~8 eV, and is thus of the same magnitude.
When the electric field gradient at the nucleus exerted by the electrons is
nonzero, the nuclear levels will be split. The eigenvalues of the quadrupolar
interaction Hamiltonian are given by

_ VE;; eQ

- PP 2 _ 1,,271/2
ST a1 - 1) [3mi — I + DI + 31°) (10.24)

in which eQ is the nuclear quadrupole moment of the excited nucleus, and VE;;
is the largest component of the diagonalized EFG tensor. Analogous to the
quantum numbers for the electron, the magnetic spin quantum number m; has
the values +1, +1 —1,..., —I + 1, —I. Substitution of I = 0 and I = 1/2 in Eq.
(10.24) shows that the energy level splitting occurs only for I > 1 nuclei. Thus,
Méssbauer spectroscopy is limited to a subset of the available isotopes.

For Fe, the I = 3/2 level splits under the influence of the field gradient into
levels with quantum number m; = 3/2, 1/2, —1/2, and —3/2. Thus, two different
energy levels exist for the I = 3/2 nucleus in a nonzero electric field gradient, but
the I = 1/2 level remains a single, though doubly degenerate (21 + 1), level (Fig.
10.5). From Eq. (10.24), the splitting of the I = 3/2 level is equal to

AEys = —1/2VE;; eQ(3"Fe™)(1 + n2/3)42 (10.25)

where the superscript m indicates that Q is the quadrupole moment of the excited

state of >"Fe.
As noted by Tsirel'son et al. (1987), there is considerable scatter in the re-

ported values for Q(*’Fe™). A theoretical value of Q has been reported as
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FIG. 10.5 Nuclear energy levels for the ground state and first excited state of *"Fe. Left: zero
field gradient, right: nonzero field gradient.

(0.156 + 0.02)- 10~ 28 m? (Litterst et al. 1978). Calculation of the EFG for aFe,0,,
and solving Eq. (10.25) with the observed value of the quadrupole splitting has
led to a number of values, including a recent one reported as ~0.11-10728 m?
(Nagel 1985). In a similar manner, Q can be derived from the diffraction value of
the electric field gradient at the Fe nucleus. From the value for «Fe,O; and the
published splitting, Tsirel'son et al (1987) obtain Q(°"Fe™) = 0.13- 10~ 2% m?, while
Su and Coppens (1996), by combining four sets of accurate diffraction results,
obtain a best estimate of Q(*’Fe™) = 0.12(3)-107 2% cm?. All these results are
clustered in the same range. With additional accurate diffraction studies, it will
be possible to reduce the standard deviation of the X-ray value of the *’Fe nuclear
quadrupole moment.

10.3.2.1 Conversion of Units Between
Diffraction and Spectroscopic Results

The EFG is obtained from the diffraction experiment in units of eA 3 [or e au™3,

if { in Eq. (8.43) is in au~']. Conversion to the SI unit Cm~? requires the use of
4ne,, the permittivity of free space (chapter 8) (476, =1.1126265-10"1° C* N~* m 3,
1/(4ng,) = 8.9877-10° C~2 N' m?). We thus have for AE g, indicating the dimen-
sions in square brackets,

e[C]'VE;;[Cm ™3] -Q[m?])/4ng,[C* N~ ! m~?] = [Nm] = [J] (10.26)

The energy difference in J can be converted to the Méssbauer unit of mms™!

using the relation I mms~! = 7.69-10~27 J, derived above. Numerically, starting
with VE,, in €A ™3, we obtain for the conversion factor,

AEys (1)=1/2-1.602-107'9-8.9877-10°-Q[m?>]- 1.602- 10" VE, [eA 7310 +n)'2

=115.32Q (m?) VE,; (eA~3)(1+1n?3)!/2 (10.27)

where 1e=1.602-10"'2C, and 1eA~2=1602-10'' Cm™~* have been used.

Assuming that Q(3"Fe™) = 0.15- 10728 m?, and substituting the conversion factor
from mms~! to J, we get for Fe,

AEqs (mms™') = 0.225 VE,, (eA73)(1 + n2?)12 (10.282)
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or, equivalently
AEys (mms™') = 1.520 VE;; (e au™*)(1 + /)12 (10.28b)

As in chapter 8, we will refer to contributions from the electron density
centered on the nucleus as central contributions, and to the remainder as peripheral
contributions. In the spectroscopic literature, the latter are commonly referred to
as lattice contributions, a term we will avoid as it conflicts with the common
definition of the lattice as a mathematical concept.

In the case that the axis of quantization is the z axis, and 7 is zero, the central
contribution to AE g can be directly related to P, by substitution of the expression
(10.18) for VE_, into Eq. (10.28b). With Q,(Fe, x = 1) = 4.978 au™ 3, we obtain

AEys(mms™ ') = 15.72k> Py, (10.29)

One of the earliest applications of this expression was to the mineral pyrite,
FeS,, in which the iron site has site symmetry 3, and the iron atoms are in a
distorted octahedral environment (Fig. 10.6) (Stevens et al. 1980). The asphericity
of the electron density is evident in the deformation density section through the
Fe atom, shown in Fig. 10.7. Because of the local symmetry of the Fe site, d,, is
the only allowed quadrupolar term, and the asymmetry parameter # is zero. The
value of VE;, for the Fe atom was reported as 1.7-10'% esu cm 3, or 3.5¢A?
(1e =04802-10""esu), equal to 5.6-10'' Cm™>. With Eq. (10.28a), AEy; is
obtained as 0.8 mm s~ !, which is, within the experimental error of the diffraction
experiment, equal to the Mdssbauer values of 0.634 (6) mm s~! (Finklea et al.
1976).

FIG. 10.6 Coordination of disulfide ions about iron in pyrite. Ellipsoids are plotted at 90%,
probability. The dashed lines represent the plane containing the axial Fe-S bonds and
bisecting the equatorial bonds in which the electron density is plotted in Fig. 10.7. Source:
Stevens et al. (1980).
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(b)

FIG. 10.7 Experimental electron density in a plane contaning the iron atom in pyrite,
defined in Fig. 8.4, showing the accumulation of deformation density in the diagonal
directions. Contours are at 0.2 ¢eA ™3, Zero and negative contours are broken lines. (a) The
experimental deformation density, (b) the model deformation density. Source: Stevens

et al. (1980).
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A second, more recent, example is the analysis of the combined synchrotron/
sealed-tube data on Cu,O (Kirfel and Eichhorn 1990). The compound Cu,O
exhibits one of the largest known electric field gradients at the Cu nucleus. As the
Cu atoms are located on a three-fold axis in the cubic crystals, the EFG tensor is
diagonal, and, as in pyrite, is described by a single parameter. The most compre-
hensive refinement of the data gives a value of VE,, of +1.31(7)-1022Cm ™3, in
excellent agreement with an NMR value of 1.34-1022 Cm~3. The X-ray study
resolved a controversy about the sign of the EFG, which was predicted to be
positive by the ionic point charge model, but not by a later more advanced
calculation of a cluster model for the structure.

10.3.2.2 The Sternheimer Shielding and
Antishielding Factors

Sternheimer has pointed out that the quadrupolar components of the charge
distribution induce a polarization of the charge density which affects the effective
field gradient at the nuclear positions (Sternheimer and Foley 1956). As the inner
shells are close to the nucleus, the effect on the electric field gradient can be large.
Both shielding and antishielding occur, the latter corresponding to an enhancement
of the EFG. The Sternheimer antishielding factor y(r) is dependent on the distance
to the nucleus for small r, but is quite constant beyond about 1-1.5 A from the

nucleus.
The effective peripheral contribution to the EFG, including antishielding, is

given by
VEFRenefiective — (1 — y ) VEP®™ (10.30)

Quantum-mechanical perturbation theory calculations show y_, to have large
negative values for most atoms. Values for Fe, Fe?*, and Fe**, given in Table
10.4, range between —8 and —11. It follows that the peripheral contribution is
more than nine times enhanced by antishielding.

The calculations show that the central contribution to the EFG, due to the
valence electrons, is shielded rather than antishielded, but the effect is less
pronounced. The shielding factor R is the density-weighted average of y(r),
T core, vatence/ I~ > Dcore, valences Where the average is to be taken separately
over the core and valence shells, depending on the shell in which polarization is
induced.

For the neutral Fe atom, the value of R = 0.07 is often used in spectroscopic
work (Ray and Das 1977). Recent values for both Fe and its free ions are listed
in Table 10.4. Values of R, for k.. 7 1 can be obtained by applying the
polynomial in the first footnote of the table.

The total effective EFG is obtained from the expression

VEY =(1 —R)VE® + (1 —y,) VEFF" (10.31a)

If the electron density were known at high resolution, the antishielding effects
would be represented in the experimental distribution, and the correction in Eq.
(10.31a) would be superfluous. However, the experimental resolution is limited,
and the frozen-core approximation is used in the X-ray analysis. Thus, for
consistency, the R, shielding factor should be applied in the conversion of the
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TABLE 10.4 Sternheimer Nuclear Quadrupole
Factors R and y_, for Fe, Fe?*,and Fe? ™" (x = 1.0?)

R Ve

Fe, (r 33, =4979 au

Core 0.0730 —8933
Valence® 0.0521 —1.294
Total core + valence 0.1251 —-10.227
Fe?*, (r~3);, = 5086 au

Core 0.0704 —8.681
Valence 0.0442 —-2.354
Total core + valence 0.1146 —11.035
Fe3*, (r™3>;, = 5.728 au

Core 7974
Valence —1.453
Total core + valence —9.427

® For Fe?*, the dependence of R_,,. 0N K,yience is Well fitted by the
polynomial R.,(Fe?*, k)= 1.0686—2.4955x +2.061 00k — 0.56369x>.
The corresponding expression for neutral Fe is R .(Fe, k) =1.1061 —
2.5832x + 2.1352x? — 0.585 19x3.

® Including the two 4s electrons.

¢ Spherical atom, R =0.

Source: Su and Coppens (1996).

X-ray EFG values to spectroscopic splittings. But the polarization of the valence
shell is at least in part accounted for in the aspherical multipole description. To
the extent that the model is sufficiently flexible, the shielding factor R, ., . is not
needed, and the correction equation becomes

\7E§J‘.T = (1 = Reore) VE,‘.’J.al + (1 = Yo, core) VEF* (10.31b)

Though the peripheral contribution is considerably enhanced by the anti-
shielding, it is nevertheless small relative to the central contribution, except for
very short metal-ligand distances (Coppens 1990).

Applications of the core shielding factors in X-ray studies of pyrite, Fe(Il)
phthalocyanine, and bis(pyridine)(meso-tetraphenylporphinato)iron(Il) generally
improve agreement with spectroscopic values (Su and Coppens 1996).

10.4 Electron Density Studies of Octahedral and Distorted
Octahedral Complexes

10.4.1 Complexes with CO, CN, and NH, Ligands
Octahedral and distorted octahedral complexes of first-row transition metal atoms

were subjected to X-ray charge density analysis in the pioneering studies of Iwata
and Saito in the early 1970s (Iwata and Saito 1973).
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TABLE 10.5 Comparison of Orbital Populations in a Number of Octahedral and
Distorted Octahedral Complexes (From Treatment with Zero 4s Population)

Co(NH,)* Co(NH,)}* Co(CN)~ Cr(CN)}~ Cr(CO), HPNO—Co

Reference a b b a ¢ d
(T 26.4 24.3 250 194 16.4
al0) }76.0 }76.5 }74.2 }69.3 70.8 }66.3
e, (") 49.6 522 492 499 499
e (%) 24.1 23.5 259 30.7 29.2 336
e (electrons) 1.89 1.75 1.88 1.61 1.37 2.41
Total 3d population 7.84 7.44 7.26 5.26 4.69 7.27

* Data from Iwata and Saito (1973), room temperature study, analysis from Holladay et al. (1983).
® Data from lwata (1977), liquid nitrogen temperature study, analysis from Holladay et al. (1983).
¢ Rees and Mitschler (1976), liquid nitrogen temperature study.

¢ Wood {1995), hexapyridine N-oxide Co(l1) perchlorate, liquid nitrogen temperature study.

Many additional studies have since been made. A summary of the results for
a number of octahedral complexes is given in Table 10.5. The predictions of ligand
field theory are clearly borne out by the results, which show pronounced
depopulation of the field-destabilized e, orbitals and increased population of the
stabilized t,,(e,, a,) orbitals relative to the distribution in the high-spin spherical
atom,

The population of the destabilized e, orbitals is larger for the Co complexes
than for the Cr compounds listed, a trend with increasing number of electrons
reproduced in the sulfides discussed in the following section. A population of more
than two electrons of the e, orbitals implies population of the antibonding
metal-ligand orbitals, a state only reached in the Co(II) complex listed in the last
column. The total number of d electrons, however, seems to correlate more with
the element than with the specific valence state of the element, as there is no
systematic difference between the Co(II) amd Co(IlI) complexes. But the number
of available studies is still too small to allow more general conclusions.

10.4.2 First-Row Transition Metal Sulfides

Iron pyrite, FeS,, was among the first transition metal complexes of which the
charge density was studied by X-ray methods. It has a simple rock-salt-type
structure with alternating Fe?* and SeZ ™ ions being located at sites of symmetry
3 in the space group Pa3. The experimental charge density shows a pronounced
preferential occupation of the stabilized a, and e, orbitals (Fig. 10.7), which point
into the voids between the ligands. The features are sharpened in the static density
map, shown in part (b) of the figure. The populations from a refinement including
higher cumulants for the thermal motion treatment, but keeping the total Fe
population equal to six, are given in the first column of Table 10.6.

The results of a rerefinement of the FeS, data and of more recent accurate
data on CoS, and NiS, (Nowack et al. 1991) are listed in Table 10.6. Anharmonic
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TABLE 10.6 Electron Population in First-Row Transition Metal Sulfides

FeS,* FeS,’ CoS," NiS,"
P(a,) 1.59 (6) 1.68 (7) 1.73 (8) 1.94 (6)
P(e,) 281 (7) 298 9) 3.52 (12) 3.84 (10)
P(e,) 1.60 (7) 1.30 (9) 2.19 (12) 2.81 (10)
Ple,, e;) —0.09 (14) —0.02 (15) ~0.01 (14) —-0.23 (12)
Total electrons 6.0 5.97 (15) 7.44 (23) 8.58 (19)
R(F) 0.018 0.011 0.012 0.014
6%¢ 1.42 1.13 1.21 1.15

“ From population parameters in Stevens et al (1980); total Fe population fixed at 6 electrons; with anharmonic
cumulant temperature factors.

®Su and Coppens (to be published): with Gram-Charlier temperature parameters, and anomalous scattering
corrections as given by Kissel and Pratt (1990).

¢ Goodness of fit [Eq. (4.27)].

Gram-Charlier temperature factors (chapter 2) were applied in this analysis,
which made use of the XD programming package (Su and Coppens, to be
published). In accordance with the results on HyPQ,, discussed in chapter 3, the
values of n; were chosen as 6, 6, 7, and 7 for I = 1, 2, 3, and 4, respectively. How-
ever, the differences between the results from this choice and those of two
alternative selections (4, 4, 4, and 4; and 6, 6, 6, and 6) are within one standard
deviation.

Except in the Ni compound, the a, and ¢, orbitals are less than fully populated
in agreement with the m-metal-to-ligand back-donation concept discussed in
section 10.2.2. The trend of increased population of the destabilized e, orbitals in
the Fe - Co — Ni sequence is evident. The destabilized orbitals, which point
towards the ligands, participate in o-metal-ligand bonding, corresponding to
o-ligand-to-metal electron donation. The population of these orbitals beyond two
electrons for the Co and Ni chalcogenides indicates that antibonding is of
increasing importance towards the right of the periodic table. This in accordance
with the increase of the M-S distances in the same sequence from 2.2633 (2) to
2.3252 (1) to 2.3987 (3) A, and provides an explanation for the generally observed
increase in low-spin radii of the transition metals towards the right of the periodic
table. The e , e, cross term is insignificant, which indicates that the vertical mirror
planes containing the three-fold axis are well preserved on the lowering of the
symmetry of the coordination sphere from octahedral to trigonal.

The model deformation densities for all three compounds show a peak
between the metal atom and the bonded sulfur, located closer to the sulfur
atoms, in a region not covered by Fig. 10.7. A local density functional calcula-
tion of pyrite by Zeng and Holzwart (1994) gives a theoretical deformation
density which closely reproduces the features of the experimental densities,
including the Fe—S bond peak. No orbital populations are as yet available from
this calculation.
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10.5 Electron Density Studies of lron(il) Porphyrins

10.5.1 The Electronic Structure of Iron(ll)
Tetraphenyl Porphyrins

Unlike the metal atoms in the chalcogenides discussed in the previous section, the
iron atoms in iron(II) tetraphenyl porphyrins and the related iron(II) phthalocyanine
generally occupy crystallographic sites with symmetry T or 1 only. The exception
is the iron site in iron(II) tetraphenyl porphyrin (FeTPP), space group I142d, which
has 4 symmetry.

The electronic structure varies widely in the iron porphyrin family, and
depends on the presence and the nature of axial ligands. When FeTPP is axially
substituted by two pyridine ligands, the complex has a singlet ground state; but
on tetrahydrofurane (THF) substitution, a quintet state is obtained. Unsubstituted
FeTPP and iron(I1) phthalocyanine have triplet ground states, reported variously
as *B,,, ’E, and *A. The reason for the ambiguity is that the electronic levels are
closely spaced, which means that configuration interaction must be taken into
account to obtain reliable theoretical results. On the other hand, the charge
densities vary widely among the alternative configurations, so the X-ray method
provides a suitable probe for resolving any controversy.

10.5.2 Experimental Results for Iron Porphyrins and
Comparison with Theory

The deformation density in the plane of the porphyrin ring of bis(pyridine)(meso-
tetraphenylporphinato)iron(I1) (bPyFeTPP), shown in Fig. 10.8, shows density
accumulation near the iron atom in the diagonal directions bisecting the iron-
pyrrole nitrogen-bonds. This indicates preferential occupancy of the d,, orbitals
(Li et al. 1988, Mallinson et al. 1988),% as confirmed by the d-orbital population
analysis (Table 10.7). This feature is quite generally observed for low- and
intermediate-spin transition metal porphyrins, and reproduced in theoretical
calculations, including those using density functional methods (Berkovitch-Yellin
and Ellis 1981). But it does not occur in the high-spin bis-tetrahydrofurane complex
discussed below.

Density accumulation is also evident between the nitrogen atoms and the
transition metal atom, quite close to the former. This accumulation represents the
ligand participation in the metal-ligand o-bonding orbitals, and is as observed in
the charge density maps of the metal sulfides.

The populations of the crystal-field-stabilized d,., d,., and d,, orbitals are in
very good agreement with results of an Extended Hiickel (EH) calculation (third
column of Table 10.7), which is perhaps unexpected, given the approximate nature
of the calculation. Reasonable agreement is also obtained for d,., but not for the
destabilized d . _ . orbital, for which the EH method overestimates the population

2 The d-orbital population analysis was performed with both the harmonic and a more complete
anharmonic thermal motion treatment, as discussed in section 10.7.3. The harmonic map is shown here.



Charge Density Studies of Transition Metal Compounds 231

FIG. 10.8(a) Perspective drawing of bis(pyridine)(meso-tetraphenylporphinato)iron(II).
Source: Mallinson et al. (1988).

of the bonding orbital. The overestimate of the g-donation from the ligand to the
metal orbitals is a recurring result, characteristic for approximate calculations,
which tend to underestimate the stability of the ligand orbitals. Since the ligand
orbitals lie below the metal orbitals (Fig. 10.4), this reduces the energy difference
between the two sets, and thus increases the g-donation.

Bis(tetrahydrofurane)(meso-tetraphenylporphinato)iron(il) (bTHF FeTPP) is
the only known six-coordinate high-spin Fe(Il) complex. Its THF ligands are
rather loosely bound. Crystals slowly lose THF when exposed to the atmosphere,
while the iron is five-coordinate in a solution in benzene (Reed et al. 1980). The
magnetic susceptibilty of bTHF FeTPP is temperature dependent (Lecomte et al.
1986) and the axial Fe—O bonds shrink on cooling from 1.35A at ambient
temperature to 1.29 A at nitrogen temperature.

The deformation density in the plane of the macrocyclic ligand, measured at
100 K (Fig. 10.9), differs radically from the corresponding map for bPy FeTPP.
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FIG. 10.8(b) Deformation electron density in the porphyrin plane in bis(pyridine)(meso-
tetraphenylporphinato)iron(I1). Contours are at 0.10 eA ~3. Negative contours are broken
lines. First positive contour is 0.05 eA. Source: Li et al. (1988).

TABLE 10.7 d-Electron Orbital Populations
in bis(Pyridine)(meso-phenylporphinato)
iron(II) (the z axis is perpendicular to the
molecular plane, the x and y axes point
towards the ligands)

Extended Hiickel

Orbital Experimental Calculation®
dy:_ye 0.35 (4.8%) 0.81 (11.0%)
d.. 1.05 (14.4%;) 0.724 (9.8%)
dy.,d,. 1.93 (26.5%,) 193 (26.1%)
dy, 202 (27.7%) 1.99 (27.0%)
Total 7.29 7.40

* W. R. Scheid. private communication.
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=

FiG. 10.9 Deformation density in the plane through the iron atom and the pyrrole ring in
bis(tetrahydrofurane)(meso-tetraphenylporphinato)iron(Il) after averaging over the molecular
mmm symmetry. Contours are at 0.5 eA ~>. Source: Lecomte et al. (1986).

The d-orbital peaks near the iron atom now occur in the direction of the
pyrrole—nitrogen ligand atoms, and thus lie along the bonds, indicating the effect
of covalence (o-donation) superimposed on the cylindrical distribution of the d®
ion.

Comparison of the orbital populations with the idealized ionic states (Table
10.8) shows reasonable agreement with the °E, state. The depopulation of the
d,,,y, orbitals and an excess population of d,._ . relative to the ion is as expected
from the o-donation, n-back-donation concept applied to a high spin complex.

As noted above, the nature of the electron ground states of iron(I1) porphyrin
{FeP) and the related complex iron({I) phthalocyanine (FePc) have been contro-
versial, with assignments ranging from *B,, based on magnetic data (Barraclough
et al. 1970) to *E, and 3A4,, from theoretical calculations and from techniques
such as NMR and circular dichroism. Some of the theoretical results are
summarized in Table 10.9. The calculations show that the spacing of the *4,, and
3Eg levels is only a few tenths of an electron volt (eV).

Experimental orbital populations for FePc, obtained at 110 K (Coppens and
Li 1984), are given in Table 10.10, together with values for the ionic configurations.
The main difference between the *E,4 and *4,, states is a shift of one electron
from the d,. ;. orbitals to the d_, orbital. The experimental populations are close
to the almost 3:1 ratio of the d, ,./d.. populations predicted for *E,. Compared
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TABLE 10.8 Iron Atom d-Orbital Populations in bis(Tetrahydrofurane)
(meso-tetraphenylporphinato)iron(IT). Axes as defined in Table 10.7

Term
Symbol B, S4y, *B,, °E, Exp.
dor_ o 1 (16.7%) 1 (16.7%) 2(33.3%) 1 (16.7%) 1.42 (24%)
d.. 1(16.7% 2 (33.3%) 1(16.7%) 1(16.7%) 1.04 (17.5%)
de. .. 2 (33.3% 2 (33.3%) 2 (33.3%) 3 (50%) 2.52 (42.6%)
d, 2(33.3%) 1 (16.7%) 1 (16.7%) 1(16.7%) 0.93 (15.7%)
Total 6 6 6 6 592

TABLE 10.9 Theoretical Results for the (3Eg - 3Azg) Energy Difference for Iron(II)
Porphyrin

AECE, — *A4,,)

Reference Type* (eV)
Zerner and Gouterman (1966), Zerner et al.

(1966) EH Negative
Obara and Kashiwagi (1982) SCF 0.32
Obara and Kashiwagi (1982) SCF after configuration mixing 0.08
Sontum et al. (1983) SCF-Xua 0.2
Rohmer (1985) SCF-CI 0.27
Edwards et al. (1986) INDO 027
Edwards et al. (1986) INDO-CI 0.03
Rawlings et al. (1985a, 1985b) SCF 0.29
Rawlings et al. (1985a, 1985b) SCF-Cl —047

* EH: Extended Hiickel, SCF: Self-Consistent Hartree Fock, INDO: Intermediate Neglect of Differential Overlap, CL:
Configuration Interaction.

TABLE 10.10 d-Electron Orbital Population in Iron(II) Phthalocyanine. Axes as defined
in Table 10.7

Term
Symbol *E A 34, 3B, *E,B Exp. X-ray
de_ s 0.70 (7) (12.9%)
d_. 1 (17%) 2 (33%) 1(17%) 2 (33%) 093 (6) (17.1%)
d...,: 3 (49%) 2 (33%) 4 (67%) 3 (49%) 2,12 (7) (39.1%)

d,, 2 (33%) 2 (33%) 1 (17%) 1(17%) 1.68 (10) (30.9%)
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with ?E, there is a depopulation of the d. . and an excess population of d._ .,
as observed for bTHF FeTPP, and, again as expected, from covalent g-donation,
n-back-donation. Theoretical results on high-spin six-coordinate bis-NHFeP
(Rawlings et al 1985a, b) show a similar effect.

The distinction between the two states is readily illustrated in a deformation
density section perpendicular to the porphyrin plane through the iron atom.
Because of the transfer of an electron into the d.. orbital in going from *E,_ 4, and
to *A,,, the former configuration shows a deficiency and the latter an excess of
density above and below the nitrogen atom. This is confirmed by theoretical
deformation density maps (Fig. 10.10) (Rohmer 1985). The experimental map for
FePc shows the deficiency along the z axis, as expected from the d-orbital
populations listed in Table 10.10.

On the other hand, the experimental results on (meso-tetraphenylporphinato)-
iron(11) (FeTPP) (Li et al. 1990) are in reasonable accord with the *4,, assignment,
particularly with regard to the crucial d,. occupancy (Table 10.11). The population
of the d,._ . orbital is small, in agreement with the SCF~CI results, indicating a
smaller metal contribution to the s-bonding orbital compared with FePc. This is
compatible with the lengthening of the Fe—N (pyrrole) bond length to 1.967 A
from 1.927 A in FePc. We note that the d,, population is significantly lower than
predicted by the calculations, and that the Extended Hiickel results again
overemphasize o-covalence relative to the ab-initio calculations and the experi-
mental results.

It is evident that FeTPP and FePc have different ground states in the
crystalline modifications studied. Apart from the different Fe—N bond lengths,
there is evidence that intermolecular interactions play a role. Theoretical studies
of substituted porphyrins provide evidence for the strong sensitivity of the ground
state to axial ligation (Mispelter et al. 1980). In monoclinic FePc, meso-nitrogen
atoms (i.e., nitrogen atoms in the bridging bonds) of neighboring molecules are
located at 3.42 A above and below the iron atoms. They constitute an axial
“pseudoligand.” In tetragonal FeTPP, the molecular planes are perpendicular to
the 4 axis of the space group I42d, and no such intermolecular approach
exists.

TABLE 10.11 d-Electron Orbital Populations in (meso-Tetraphenylporphinato)iron ().
Axes as defined in Table 10.7

Theoretical (Nowack et al. 1991)

Experimental 34,,-SCF 3E,A-SCF EH
dea e 0.24 (15) (3.9%) 0.18 (2.9%) 0.18 (2.9%) 0.90 (12.8%)
d.r 2.10 (14) (33.7%) 1.94 (31.7%)) 0.99 (16.1%) 1.07 (15.3%)
d.... 2.28 (18) (36.5%) 1.98 (32.3%) 296 (48.1%) 3.05 (43.5%)
dy, 1.52 (15) (25.9% 2.02 (33.0%) 2.02 (32.8%) 1.99 (28.4%,)

Total 6.24 (31) 6.12 6.15 7.02
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F1G. 10.10 Computed static deformation density map of FeP. Contours at 0.10eA 3,
(a) *A,, in plane, (b) *E, in plane.
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FiG. 10.10 continued (c) >A,, bisecting plane, (d) *E, bisecting plane. Reprinted from M.
M. Rohmer, Chem. Phys Lett. 116 44 (1985) with permission from Elsevier Science-NL,
Sara Burgerhartstraat 25, 1055 KV, Amsterdam, The Netherlands.
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10.6 The Electron Density in Metal-Metal Bonds of Transition
Metal Complexes

10.6.1 Metal-Metal Bonding

Metal-metal bonding in transition metal complexes of low nuclearity (i.e., with
only a few metal atoms) tends to be more directed and therefore stronger than
the bonding in metals discussed in chapter 11. Accordingly, the metal-metal bonds
in transition metal complexes are often localized and considerably shorter than
those in most extended solids. Charge accumulations are frequently observed in
metal-metal bonding regions of deformation density maps.

Many of the currently available studies of metal-metal bonding were completed
before the multipole model and the topological analysis of the total density were
fully developed. For this reason, the discussions reported below focus on the
deformation density distributions, and their comparison with theoretical results,
though a more quantitative analysis is now possible and would be of considerable
interest.

10.6.2 Bonding Between Chromium Atoms

Quadruply bonded Cr—Cr compounds like the dichromium tetracarboxylates
have metal-metal bond lengths which vary by as much as 0.7A between
compounds (Cotton and Stanley 1977, Cotton 1978). A “pure” quadruple bond
is a g*n?6* bond, with one ¢ (d,» — d,2), two n (d,, —d,, and d,, — d,,), and a §
(d., — d,,) component, z being selected along the Cr—Cr axis. Theoretical calcula-
tions show that the formal bond order of four can be drastically reduced by strong
correlation effects involving excited-state configurations with antibonding character
for the Cr—Cer interaction (Bénard 1978a). For dichromium tetraformate, calculated
with a double { basis set for the transition metal valence shells and a minimal
basis set for the other orbitals, the noncorrelated SCF wave function is found to
have very small weight (18%) in the multideterminant expansion of the Cl
(configuration interaction) wave function. Large contributions of antibonding
Cr—Cr orbitals from the additional Slater determinants, added to the wave
function, tend to reduce the strength of the Cr—Cr bond. The Cr—Cr pairwise
potential is found to be very shallow when plotted as a function of the Cr—Cr
distance, thus explaining the large variation of observed Cr—Cr distances.

The CI deformation density maps have a maximum of about 0.1 A ™3 in the
Cr—Cr bond region, compared with 0.2 eA ™3 according to the SCF calculation.
The overall theoretical charge distribution is in good qualitative agreement with the
experimental results on dichromium tetraacetate dihydrate, [Cr(CH,;COQ],]-2H,0,
averaged over equivalent regions (Fig. 10.11) (Bénard et al. 1980), except on the
bond axis, where differences may be due to the absence of an axial ligand in the
complex on which the calculation was performed. The Cr—Cr region does not
show a peaked accumulation of the electron density, but there is a broad area of
excess electron density off the bond axis, compatible with overlap density between
diffuse d orbitals. The accumulations are statistically significant in view of the
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FIG. 10.11 Electron density in the metal-ligand plane of dichromium tetraacetate. (a) Molec-
ular diagram, (b) deformation density through Cr—Cr and the acetyl group averaged
over equivalent regions. Contours are at 0.10 eA ™3, Negative contours are broken lines.
Source: Bénard et al. (1980).

estimated SD of 0.02 eA =3 in the averaged maps, and they support the presence
of n- and J-bonding between the chromium atoms.

The Cr—Cr bond length in dichromium tetraacetate dihydrate is 2.362 (1) A
(Cotton et al. 1971), compared with 2.498 A in Cr metal. A much shorter Cr—Cr
bond of 1.879 A length exists in tetrakis (u-2-hydroxy-6-methylpyridine)dichromium,
Cr,(mhp),; this bond has been labeled “supershort.” The bulky bridging ligands
in this complex are coordinated through the pyridine nitrogen to one chromium
atom, and through the hydroxy oxygen atom to the second chromium atom (Fig.
10.12). The existence of methyl groups in the 6 position of the hydroxypyridine
ring limits access to the chromium atoms, and thereby prevents axial ligation,
which appears to strengthen the metal-metal bond. The deformation density maps
show a striking accumulation of density between the Cr atoms, with a maximum
at bond midpoint, and extension over the n and ¢ regions. The peak heights
(experimental, 0.4 eA ~3; theoretical for [H,P(CH,),],Cr,, 0.3 eA~?) are large and
comparable to bonds between first-row atoms.
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" Cr

Fic. 10.12 The 2-hydroxy-6-methylpyridine ligand its bonding to the Cr atoms in tetrakis
(u-2-hydroxy-6-methylpyridine)dichromium, Cr,(mhp),.

10.6.3 Mn—Mn and Fe—Fe Bonding

Dimanganese decacarbonyl, Mn,(CO),,, is a simple dimeric compound with a
metal-metal bond unsupported by bridging ligands. The existence of the metal—
metal bond satisfies the 18-electron rule and accounts for the diamagnetism of the
complex. The X—X deformation density, based on both AgKa and MoKa data
collected at 78 K, shows only a very diffuse maximum of 0.05eA ™3 around the
bond midpoint, not significantly different from zero, given the experimental
standard deviation (Martin et al. 1982). While accumulation in the standard
deformation density is not a good criterion to judge bond strength, especially for
atoms with more than half-filled valence shells (see chapter 5), the weakness of
the bond is supported by HFS—Xua theoretical calculations, which show the
populations in Mn,(CO),, to be very similar to those in the Mn(CO); fragment
(Heijser et al. 1980). Density accumulation in the metal-metal bond, with a peak
height ~0.1 eA ™2, becomes visible in the theoretical fragment deformation map, in
which the density of two Mn(CQO), fragments is subtracted from the total density.
The weak bonding is found to be entirely due to interaction between the 3d,. and
4p, metal orbitals.

A similar lack of density accumulation in the metal-metal bonding region in
the X-ray standard deformation density map has been observed for (u-methylene)
bis[dicarbonyl(n*-cyclopentadienyl)manganese], (u-CH,) [CpMn(CO),], (Clem-
ente et al. 1982). In the homologous complexes Fe,(CO), and Co,(CO)g, the
theoretical results show the bonding to arise entirely from interactions through
the bridging ligands.

A complex with an Fe—Fe bond for which the ¢lectron density is available
is bis(dicarbonyl-n-cyclopentadienyl iron), [CsHFe(CO),], (Fig. 10.13) (Mitschler
et al. 1978). The 18-electron rule again requires only a single bond to explain the
observed diamagnetism. The combined X-ray and neutron study indicates a
compliete absence of density accumulation in the metal-metal bonding region of
the standard deformation density, in agreement with an SCF theoretical density,
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FIG. 10.13 Diagram of the bis(dicarbonyl-n-cyclopentadienyl iron) molecule at 74 K. The
50% probability ellipsoids are shown. Source: Mitschler et al. (1978).

and similar to the results for dimanganese decacarbonyl. The Mulliken population
analysis of the SCF wave functions gives a small negative value for the overlap
population between the iron atoms, and thus supports a multicenter metal-metal
interaction involving the two bridging carbonyl groups, rather than a direct
linkage between the metal atoms (Bénard 1978b).

10.7 Anharmonic Thermal Motion and the Bonding Anisotropy
of Transition Metal Complexes

10.7.1 Atomic Asphericity and Anharmonic Thermal
Motion

Though the anharmonic components of the thermal motion decrease rapidly with
temperature, as described in chapter 2, they will be present to some extent even
if the motion is reduced to zero-point vibrations.

The vibrational displacements corresponding to the anharmonic terms in the
potential are most pronounced in the directions away from the stronger bonding
interactions, in which restoring forces are weaker. Thus, for the tetrahedral site
symmetry of the diamond structure, the anharmonicity causes a larger mean-
square displacement in directions opposite to the covalent bonds. At lower
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temperatures, at which the bonding anisotropy dominates the asphericity, this will
reduce the asphericity of the thermally averaged charge density distribution, as
discussed further in chapter 11.

In low-spin transition metal complexes, the preferential occupancy of the d
orbitals in the crystal field tends to create excess density in the voids between the
bonds, which means that anharmonicity tends to reinforce the electron density
asphericity. We will discuss, in the following sections, to what extent the two
effects can be separated by combined use of aspherical atom and anharmonic
thermal motion formalisms.

10.7.2 A Model Study on Theoretical Structure
Factors of Fe(H,0),

Mallinson et al. (1988) have performed an analysis of a set of static theoretical
structure factors based on a wave function of the octahedral, high-spin hexa-
aquairon(II) ion by Newton and coworkers (Jafri et al. 1980, Logan et al. 1984).
To simulate the crystal field, the occupancy of the orbitals was modified to
represent a low-spin complex with preferential occupancy of the ¢,, orbitals, rather
than the more even distribution found in the high-spin complex. The complex ion
(Fig. 10.14) was centered at the corners of a cubic unit cell with a = 10.000 A and
space group Pm3. Refinement of the 1375 static structure factors (sin /A<12 A1)
gave an agreement factor of R = 4.35% for the spherical-atom model with variable
positional parameters (Table 10.12). Addition of three anharmonic thermal

FIG. 10.14 Structure of the hexaaquairon(II) ion. Source: Mallinson et al. (1988).
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TABLE 10.12 Refinements of Static Theoretical Structure Factors of the
Hexaaquairon(II) Ion

Spherical, Spherical, Aspherical Fe, Aspherical Fe,
Uj=0 Anharmonic Fe U;=0 Anharmonic Fe
No 1375 1374 1375 1375
N, 3 6 6 9
wR(F) 0.0435 0.0417 0.0401 0.0398

parameters for the iron atom (U, ,, c''!!, and ¢’'22; other parameters being related

by the symmetry of the cubic site) reduced the R factor to 4.17%, compared with
R =4.01% for the multipole model with the three variables k”, Py, and the
population of the cubic harmonic K,, , [ =0.78245d,+ 0.579 394, ,, see appendix
D, section D.3(c)], and no thermal parameters. Though the multipole model gives
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fFiG. 10.15(a) Model maps in the FeO, plane in low-spin [Fe(H,0)¢}>", obtained by
subtraction of the calculated structure factors from a conventional refinement of theoretical
structure factors from those of a refinement in which the Fe atom is treated with the
multipole formalism, and subsequent Fourier transformation. Contours are at 0.20 eA 3.
Based on theoretical data. First positive contour is at 0.1 eA 2. Negative contours are
broken lines. Oxygen atoms are at 2.131 A from the iron atom in horizontal and vertical
directions. Source: Mallinson et al. (1988).
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FIG. 10.15(b) Model maps in the FeQ, plane in low-spin [Fe(H,0)¢]?*, obtained by
subtraction of the calculated structure factors from a conventional refinement of theoretical
structure factors from those of a refinement in which the Fe atom is treated anharmonically,
and with subsequent Fourier transformation. Based on theoretical data. Contours are at
0.20 ¢A ™3, First positive contour is at 0.1 eA ™ 3. Negative contours are broken lines. Source:
Mallinson et al. (1988).

the better fit, the model deformation maps for the two refinements are remarkably
similar (Fig. 10.15), showing that the gross features of the electron asphericity can
be mimicked well by the anharmonic thermal vibrational model.

A final refinement of the static data with both sets of parameters gave a further
small decrease in the R factor to 3.98%, and, reassuringly, temperature parameters
smaller than three times their estimated standard deviations. At least for static
data, the refinement properly attributes the asphericity to the multipole functions.

10.7.3 An Experimental Example: Anharmonic
Refinement of bis(Pyridine)
(meso-Tetraphenylporphinato)lron(1I)

Bis(pyridine)(meso-tetraphenylporphinato)iron(II), discussed in section 10.5.2, was
reanalyzed to evaluate the importance of anharmonic motion in nitrogen-
temperature transition metal studies. A number of different refinements are
summarized in Table 10.13. It is striking that treating the Fe atom as spherical
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TABLE 10.13 Summary of Refinements of
bis(Pyridine)(meso-tetraphenylporphinato)iron(II)

v
I I 11 All atoms
Spherical, Spherical Aspherical Aspherical,
Harmonic Anharmonic® Harmonic® Anharmonic®
Ny 8497 8497 8497 8497
N, 353 349 368 489
wR(F) 0.0416 0.0365 0.0398 0.0277

* Anharmonic in this table refers to the Fe atom only; harmonic temperature parameters of the other
atoms are fixed at values from refinement L

® Only the Fe atom is treated with an aspherical valence charge distribution.

© Starting with anharmonic parameters from the high-order refinement, as described in the text.

with anharmonic thermal motion (refinement II) gives a lower agreement factor
than the converse treatment in which the Fe asphericity is taken into account, but
thermal motion is restricted to be harmonic (refinement III), even though the
number of parameters is larger in the latter case.

In a subsequent refinement, neutral spherical-atom parameters, with the
symmetry-allowed Gram-Charlier anharmonic parameters for Fe, were fitted to
3105 high-angle reflections with sin 6/4 > 0.8 A~!, even though some effects of
atomic asphericity will persist beyond this cut-off. A final refinement of all
multipole and Gram—Charlier parameters (IV), starting with the Fe anharmonicity
of the high-order refinement, converged satisfactorily. As expected, the introduction
of the anharmonicity reduces the occupancy of the crystal-field stabilized orbitals.
In this example, the population of d,, decreases from 2.02 to 1.82 and that of d,, ,,
from 3.86 to 3.38 electrons (Table 10.14). Qualitatively, the conclusions of the
harmonic treatment are not affected, particularly when the percentage occupancies
are considered. Nevertheless, for quantitative analysis of data collected at liquid-
nitrogen temperatures, the deconvolution of anharmonic thermal motion and

TABLE 10.14 Iron d-Orbital Populations
(Electrons) and Percentages of the Total
Population of bis(Pyridine)(meso-tetra-
phenylporphinato)iron(Il) Without and With
Anharmonic Treatment of the Fe Atom. Axes
as Defined in Table 10.7

Harmonic Anharmonic
dea_y2 035 (4.8%) 0.39 (6.1%)
d_: 1.04 (14.4%) 0.75 (11.8%)
dy..d,. 3.86 (53.0%) 3.38 (53.3%)

202 (27.7%)

Xy

1.82 (28.8%)
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transition metal anharmonicity requires attention. It is important to note that the
effect of anharmonicity on the charge distribution will be more serious when the
core electrons constitute a larger fraction of the total distribution, as is the case
for second- and third-row transition metal atoms.

Collection of diffraction data at liquid-helium temperatures is important to
reduce thermal motion and its anharmonicity. Similarly, the use of shorter
wavelengths at such low temperatures makes data at higher values of sin 6/4
accessible, which facilitates deconvolution of thermal motion and bonding effects.
Both very low temperatures and hard radiation are becoming more readily
available, and are expected to play a crucial role in future studies.



11

The Charge Density in Extended Solids

Extended solids encompass all solids in which no well-defined molecular entities
can be distinguished. This is the case for metals and alloys, covalently bonded
solids like diamond and silicon, and ionic crystals of which the alkali halides are
prototypes. Intermediate cases are common, such as crystals consisting of a
charged covalent network with counterbalancing cations or anions. Silicates and
their analogues are a prime example of often charged networks with partially
covalent bonding. An increasing number of solids are known in which both an
extended framework and molecular entities exist, with the molecules being
embedded in the extended framework. Graphite intercalation compounds and a
variety of host/guest complexes are examples of this class.

The bonding features in the charge density are pronounced in crystals with
extended covalent networks. The availability of perfect silicon crystals has allowed
the measurement of uncommonly accurate structure factors, of millielectron
accuracy. The data have served as a test of experimental formalisms for charge
density analysis, and at the same time have provided a stringent criterion for
quantum-mechanical methods.

We will start the discussion in this chapter with silicon and its analogues,
diamond and germanium, and proceed with the treatment of silicates, and metallic
and ionic crystals.

247
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11.1 Covalently Bonded Extended Solids
11.1.1 Silicon

11.1.1.1 The Structure Factor Formalism for
the Diamond-Type Structures

In the face-centered cubic structure of silicon, atoms are located at 1/8 1/8 1/8
and at the center-of-symmetry related position of —1/8 —1/8 —1/8. The static
structure factor can therefore be expressed simply as

F(hkl) = 413 exp 2ni<h—tg_i’> —4fBexp —2m<h~+8i+—l> (1L1)

where f§ and f§ are the scattering factors of the two center-of-symmetry-
related Si atoms. In the spherical atom approximation, f§ = f2, and Eq. (11.1)
reduces to

F(hkl) = 8f,, cos 2n<k—+$—l> (112)

It is clear that in this approximation F(hkl) equals zero for all reflections for
which h + k + I = 4n + 2. This is the reason that the observation of the (222)
reflection of diamond led Bragg to conclude that bonding effects are detectable
by X-ray diffraction (see chapter 3). If the Si atoms are not spherical, and their
density contains antisymmetric components, such as dipolar or octupolar valence
density functions, f8§ will be the complex conjugate of 5! and Eq. (1.12) is no
longer valid. We can write f5 = f. + if, and f% = f. — if,, where ¢ stands for
the symmetric and a for the antisymmetric component of the atomic rest density.

This gives
F(hkl) = 8f, cos 2n<h—+—§il> — 8f, sin 27:("—+;3+—’) (11.3)

which leads to nonzero intensity for the h + k + | = 4n + 2 reflections.

As first shown by Dawson (1967), Eq. (11.3) can be generalized by inclusion
of anharmonicity of the thermal motion, which becomes pronounced at higher
temperatures. We express the anharmonic temperature factor of the diamond-type
structure [Chapter 2, Eq. (2.45)] as T(H) = T(H) + iT,(H), in analogy with the
description of the atomic scattering factors. Incorporation of the temperature

! This is no longer strictly true when resonance scattering is taken into account, which adds the same
imaginary component to both atomic scattering factors. In the case of silicon, it is straightforward to
correct the structure factors for anomalous scattering, using reasonably accurate temperature
parameters.
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FIG. 11.1 Temperature dependence of the magnitude of the (442) structure factor of silicon.
Source: Data from Tischler (1983).

parameters into Eq. (11.1), and writing out all terms, gives

k
F(hkl) = 8 ﬁ[Tc cos 2n(h—fgi+—’) — T.sin 2n(h_i§i~’>}

_8 ﬁ,[]j, cos 27:(1%1-—’) + T,sin 2n<£%j-l)] (11.4)

With T, =0 and T, = 1, Eq. (11.3) is retrieved as required.
For the h 4+ k + | = 4n + 2 reflections, this becomes

Fh+k+l=dn+2)=(-D)""Y LT, + £, T) (11.5)

from which it is clear that the intensity of reflections such as (222) and (442) is
entirely due to bonding effects and anharmonic thermal motion. The chemical
bonding leads to an accumulation of overlap density into the tetrahedrally
arranged covalent bonds, but the thermal displacements are larger in the directions
opposite the covalent bonds, as the stretching of the bonds is easier than their
compression. The quantities f, and T, therefore have opposite signs. Because
thermal motion increases with temperature, the two contributions to Eq. (11.5)
cancel at a “crossover” temperature. This is elegantly illustrated by a series of
measurements of the temperature dependence of the (4n + 2) reflections of silicon
by Batterman and coworkers (Roberto and Batterman 1970, Trucano and
Batterman 1972, Tischler 1983, Tischler and Batterman 1984). Tischler and
Batterman (1984) measured the temperature dependence of the (442) and (622)
reflections of Si and Ge, using synchrotron radiation. Their results for Si-(442)
are plotted in Fig. 11.1. The balance between the two effects that causes the
intensity minimum at about 525 K is evident.

For higher-order “forbidden” reflections, the bonding effects will be less and
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the thermal effects larger, so the crossover will shift to lower temperatures, or
completely disappear. The latter is the case for Si-(622) (sin 8/4i =~ 0.61 A~1), the
integrated intensity of which is found to increase monotonically with temperature.
Analysis of the temperature dependence leads to a bond charge contribution
£.(622) of only +0.0088 + 0.0011 eiectrons, an order of magnitude smaller than
the value for (442).

The appearance of reflections in the diffraction pattern due to anharmonicity
of thermal motion is not limited to the diamond-type structures, and is observed,
for example, for the Al5-type structure of the low-temperature superconductor
V;Si (Borie 1981), and for zinc (Merisalo et al. 1978). It has been described as
thermal excitation of reflections, though no excitation in the spectroscopic sense
of the word is involved.

11.1.1.2 Experimental Structure Factors

The exceedingly accurate structure factors on silicon are obtained with perfect
crystals. According to dynamical theory of diffraction, the interference between
the incident and Bragg reflected waves in a perfect crystal creates a standing
wave, which is visible as aiternating dark and light fringes, with a spacing
inversely proportional to the structure factor of the Bragg reflection. The first
structure factor measurements based on Pendellésung fringes were made with
wedge-shaped perfect crystals (which must be differently cut for each reflection!)
by Hattori et al. in 1965, followed by more accurate measurements at a
level described as =0.19, by Tanemura and Kato (1972) and Aldred and Hart
(1973). Somewhat later work by Teworte and Bonse (1984) used intensity
fluctuations in high-precision double-crystal rocking curves. Saka and Kato (1986,
1987) rotated a flat crystal in the symmetric Laue geometry around an axis in the
plane of the crystal, to vary the effective crystal thickness and therefore the
diffracted intensity.

The five room-temperature and two liquid-nitrogen temperature data sets
obtained in these experiments were reanalyzed by Cummings and Hart (1988).
Where necessary, they introduced improved corrections for residual strain,
resonance, and nuclear scattering to arrive at a set of mean structure-factor values
with typical errors of 3-5 millielectrons. This is extremely good, but as noted, for
some reflections the errors are significantly larger than the 0.1% claimed earlier.
Additional accurate values for individual reflections are available for y-ray (Alkire
et al. 1982), X-ray (Roberto and Batterman 1970, Trucano and Batterman 1972),
and synchrotron X-ray (Tischler 1983, Tischler and Batterman 1984), measure-
ments. Combined, these measurements provide a superbly accurate set for analysis
of the charge density in silicon.

The structure factors on diamond and germanium are less accurate, but are
adequate for comparison with the silicon results. For diamond, Pendelldsung
(Takama et al. 1990) and powder data (Géttlicher and Wolfel 1954) are available,
while for germanium, Pendellosung observations (Tamaka and Sato 1981, Deutsch
et al. 1990) and reflection-profile based measurements of the structure factors
(Matshushita and Kohra 1974) have been made. The relative merits of the different
sets have been discussed by Lu, Zunger, and Deutsch (Lu and Zunger 1992,
Lu et al. 1993).
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F1G. 11.2 Comparison of the ab-initio local density functional static valence density
for Si (top) with the model valence density based on the structure factor compilation by

Cummings and Hart (1988) (bottom half of the figure). Contour interval is 0.05e A3,
Source: Lu and Zunger (1992), Lu et al. (1993).

11.1.1.3 Analysis of the Density and
Comparison with Theory

Two detailed analyses of the Si structure factors are available. The first, by
Spackman (1986), was made before the consolidated list of reflections of Cummings
and Hart (1988) became available. The second, by Deutsch (1992) and by Lu et
al. (1993) is a comprehensive analysis of the available data, not only on silicon,
but also on diamond and germanium, and includes a comparison with a
large number of theoretical calculations. Notwithstanding the general agreement
between the two analyses, there are differences in detail. While Spackman corrects
for the effect of anharmonicity on the structure factors before calculating valence
and deformation density maps, Lu et al. found no evidence for anharmonicity in
their refinement of the Si (and C) room-temperature data, which in both cases
excluded the anharmonicity-sensitive (4n + 2) reflections, except (222). As a
low-order reflection, (222) is less sensitive to anharmonic effects. Notwithstanding
the difference in the treatments, the features in the density maps are generally the
same in the two studies. The bond peak in the valence density is elongated along
the bond direction and shows a double-maximum “camel back” feature with a
slight dip between the maxima (Fig. 11.2). This feature is also observed in diamond
and germanium. On the other hand, as a result of the subtraction of the spherical
atomic valence densities, the bond peak in the deformation density is elongated
perpendicular to the bond axis (Fig, 11.3).

There is almost quantitative agreement between the experimental model
valence density (lower half of Fig. 11.2) and the result of an ab-initio local density
functional calculation (upper part of Fig. 11.2). This agreement is also evident in
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F1G. 11.3 Comparison of the ab-initio local density functional deformation density for Si

with the experimental static model deformation density. Contour interval is 0.025 ¢ A3
Negative contours are dashed lines. Source: Lu and Zunger (1992), Lu et al. (1993).

reciprocal space. The R-factor between theory and experiment (after correction
for isotropic thermal motion) for the 18 reflections is only 0.21%;, with an rms
deviation of 0.012 e atom ™. For C and Ge, the agreement is poorer, with rms
deviations of 0.017 and 0.170 ¢ atom ™!, respectively, reflecting the lower quality
of the data sets. It is noteworthy that, for Ge, use of relativistic scattering factors
produces a superior fit to the theoretical structure factors.

The valence M-shell of silicon is found to expand by about 67, (k) = 0.9382),
in agreement with the results of a much earlier aspherical atom refinement,
which gave k = 0.956 (9) (Hansen and Coppens 1978). Lu, Zunger and Deutsch
(1993) (LZD) also conclude that the core L-shell is expanded by 0.5%; (x, =
0.9949), the first such observation of the effect of bonding on the inner electrons.
However, these results are not independent of the treatment of the tempera-
ture parameters. In the LZD analysis, the K + L and M shells are assigned
separate isotropic thermal parameters; the latter are found to be significantly
smaller with B, = 04585A% (no standard deviations are given), and
Biaience < 0.11 A2, leading the authors to the conclusion that the atoms do not
vibrate rigidly.

That the vibrational displacements of the valence shell electrons may be
smaller than those of the core electrons can be qualitatively understood by
considering the vibrations of two identical, strongly bonded atoms. When the
atoms vibrate in phase, they behave as a rigid body, so all shells will vibrate
equally. But when they vibrate out of phase, the density near the center of
the bond will be stationary, assuming the average static overlap density to
be independent of the vibrations. This apparently invariant component of the
valence density would contribute to a lowering of the outer-shell temperature
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parameter. Adequate separation of this effect from the valence shell expansion
due to chemical bonding will likely require accurate studies at a number of
temperatures.

11.1.2 Charge Density Studies of Silicates

11.1.2.1 The Structure of Silicates

Silicates comprise more than 95% by weight of the earth’s crust and mantle, and
are widely used in glasses, ceramics, sieves, catalysts, and electronic devices.
Crystals of silicates are often hard, and may show considerable extinction in their
diffraction pattern, which means not only that small samples must be used, but
also that ambient temperatures may be adequate for charge density studies.?

Silicates form a large family of compounds and therefore provide a fertile
ground for comparative studies. The understanding of the structure of silicates
was one of the early triumphs of X-ray crystallography (Bragg et al. 1965).
Orthosilicates like Mg,SiO, contain negatively charged isolated SiO, tetrahedra,
while pyroxenes like Mg,Si,O¢ and LiAlSi,O¢ contain chains of edge-sharing
SiO, tetrahedra, represented by the formula n(SiO;)? . The chains are linked
sideways into ribbons in the amphiboles, and into sheets with a hexagonal-
type network of composition n(Si,05)?~, in “flaky” minerals such as talc,
Mg;(Si,O,,)(OH),. The many known modifications of SiO,, including quartz,
coesite, cristobalite, and tridymite, are framework silicates, in which every oxygen
atom links two four-coordinated silicon atoms. Substitution of Si** by AI** in
the tetrahedra is widespread, and fully described in the literature. In the sheet
structures, it leads to minerals such as phlogopite KMg;(AlSi;O,,)(OH),,
and mica KAIL,(AlSi;O,()(OH),, in the framework structures to feldspars, like
sanidine KAISi;Oq4, and zeolites, of which leucite KAISi,Og and natrolite
Na,(Al,Si;0,,)-2H,0 are examples. Substitution by B** similarly leads to the
borosilicates.

The “Resource Book of Crystal Structures” by Mak and Zhou (1992) includes
a description of the rules governing silicate structure, as well as a number of
detailed examples, to which the reader is referred for necessary detail.

11.1.2.2 Charge Density Studies

As early as 1939, Pauling, on the basis of electronegativity differences between Si
and O, came to the conclusion that each Si-—O bond, rather than being purely
ionic, has a x50% covalent character. Notwithstanding this early insight, the
detailed nature of the Si—O bond remains a subject of discussion. A recent
comprehensive review (Gibbs et al. 1994) summarizing theoretical and experi-
mental geometry and charge density studies on silicates bears the title “The Elusive
SiO Bond”™.

2 As noted below, the temperature parameters for zeolites are often considerably larger than those for
simple silicates. Disorder may contribute to this difference.
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The study of the nature of the Si—O bond through analysis of its charge den-
sity is based on net ionic charges, heights of peaks in atom deformation density
maps, and, more recently, topological analysis of the total charge density.

There is considerable spread in the reported net charges on Si and O, in part
because of variations in bonding, but also because basis functions may vary
between analyses. However, the k-refinement of experimental data provides a
standard for comparison of Si and O atoms in different bonding environments.
Net charges on the oxygen atoms are similar in orthosilicates and the chain-
structure pyroxenes: k-refinement values for five orthosilicates and five pyroxenes,
listed in the survey by Tsirelson et al. (1990), average to —1.32 ¢ and —1.28 e for
the two classes. The corresponding numbers for Si are + 1.68 e and +2.34 e. This
corresponds to a net charge of — 3.60 for the SiO, ion and of — 3.00 for the Si,O4
group, a possibly significant difference. Both are counterbalanced by two divalent
cations. In natrolite (Ghermani et al. 1996), Na,(Al,Si;0,,)-2H,0, the oxygen
charges vary from —0.90 (5) e to —1.21 (5) e, the largest of which occurs for an O
atom within the Na™ coordination sphere. The charges on the Si atoms are
~+175e

The framework silicates lack counterions, therefore two oxygen charges
must exactly counterbalance the charge on silicon, leading to lower net oxygen
charges. The reanalysis of the data on coesite (Geisinger et al. 1987), a high-
pressure polymorph of SiO,, by Downs (1995), gives an average oxygen net
charge of —0.74 (6) ¢ for the five nonequivalent oxygen atoms. In the very-high-
pressure polymorph of SiO,, stishovite, stable above 10 GPa, Si is octahedrally
coordinated, while oxygen is bonded to three Si atoms in a rutile-type structure.
The oxygen charge from a x-refinement of stishovite is —0.86 (15) e (Hill et al.
1983), in quite good agreement with the coesite results, even though the octahedral
six-coordinate structure of stishovite is acknowledged to be much more ionic
than the low-pressure tetrahedral structure (Cohen 1994). All the net charges are
considerably less than the ionic values, in qualitative support of Pauling’s (1939)
concepts.

Coesite is an especially interesting case for the analysis of the Si—O bond. It
is centrosymmetric, and contains eight nonequivalent Si-—QO bonds, participating
in five different SiOSi groups, with angles at the oxygen varying from 137.22 (2)°
to 180°. Both the dynamic and static deformation densities show peaks of
0.4-0.5¢A ™3 in all Si—O bonds; the smallness of the differences between the
dynamic and static values can be attributed to the low vibrational amplitudes in
the bonded network. The peak heights exceed those in stishovite, which are
~0.3eA~? according to experiment, and 0.35eA~3 according to a linearized
augmented plane-wave (LAPW) calculation (Cohen 1994). This difference supports
the stronger ionic character of the high-pressure polymorph.

The deformation density peaks in the Si—O bonds of coesite are located away
from the midpoint of the bond towards the oxygen atom, and also tend to be
displaced towards the interior of the SiOSi angle. Downs reports a bending of the
Si—O bonds of 9° and 14° relative to the 137.22° SiOSi angle, based on the peaks
in the deformation density. This would indicate a bending of the Si—O bonds due
to O -O nonbonded repulsion, like the bending of the bonds in small ring
compounds described in the following chapter. However, according to the
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topological analysis of the total density, the bond paths and the internuclear
vectors coincide.

The experimental deformation density features, including the displacement of
the bond peaks from the bond axes, are well reproduced in theoretical maps on
the molecule H,Si,O,, which contains two linked SiO, tetrahedra in a doubly
eclipsed configuration. The results for different values of the central SiOSi angle
are shown in Fig. 11.4,

The topological analysis of the total density has the advantage of being
independent of a reference model. In coesite, the bond critical points are found
at about 0.67 A from Si and ~0.94 A from O, in contrast to the deformation
density peaks which are closer to the oxygen atoms. The values of V?p at the bond
critical point are positive, as the contraction of the density perpendicular to the
bond direction is overbalanced by the sharp decrease in density along the bond
path. The V2p values in coesite are reported as +20.3eA~5 and +12eA~%,
depending on the details of the radial density functions used in the refinements.
Positive values are not typical for pure covalent bonds, and indicate a significant
ionic contribution to the Si—O bonding in silicates. But the negative values of
V2p, which occur for covalent bonds between first-row atoms, may not be typical
for covalent bonds involving heavier atoms like Si.

Covalent contribution to the bonding is confirmed by analysis of the
components of V?p. The average values of 4, and A, representing the
contraction of the density in the directions perpendicular to the bond
(chapter 6), are found to be —9e¢A~5 compared with —4eA~% for the
independent-atom model (IAM) density and —6eA 3 for the ionic model. In
addition, the density at the bond critical point p, is &~ 1.1 eA~3, higher than
0.85eA ™3 and 0.68 eA 3 calculated for the IAM and ionic models, respectively.
Results for the borosilicate danburite CaB,Si,Oq, are similar, with p,(SiO) ~
0.95eA 3, and large positive values of V2p for the Si—O bonds (Downs and
Swope 1992).

The electrostatic potential in the silicate minerals is of importance for
understanding of the nature of electrophilic reactions, and of the position of ions
and host molecules located in cavities of microporous silicates such as the zeolites.
The zeolites have the general formula M,(I) M,(IT)[Al,SiO,, . ] -mH,0, with
r + 2s = p. The water molecules are loosely bound and can easily be removed by
heating, or replaced by other small molecules. Ghermani et al. (1996) find in their
analysis of natrolite Na,(Al,8i;0,,) - 2H,0, that the sodium ion is exactly located
at the minimum of the potential calculated from the framework charge density
without the inclusion of the cations. The depth of the minimum is —1.5eA™ !,
corresponding to an electrostatic binding energy of 21.6 eV mol ~!. By comparison,
the potential minimum in dehydrated sodium zeolite A, studied by Spackman and
Weber (1988) using earlier low-resolution data, is —0.48 eA~!. Though the
significance of such differences remains to be assessed, and is affected by variation
in V(0) between solids (chapter 8), the understanding of the framework—guest
interactions in zeolites is of obvious practical importance. Spackman and Weber
(1988) note that the pictures of the potential based on point charges at the atomic
sites are very different from the more detailed information revealed by the
diffraction experiment.
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(b)

FIG. 11.4 Theoretical deformation electron density for the molecule H¢Si,O, (basis set:
6-31G* on Si, 6-31G on O, and 3-1G on H). (a) R(8iO) = 1.595 A, SiOSi = 180°; (b)
R(SiO) = 1.610 A, SiOSi = 149°; (c) R(SiO) = 1.621 A, SiOSi = 137.5°. Contour inter-
val is 0.05 eA "3, Solid-line contours are positive; zero and negative contours are dotted
and dashed lines, respectively. Source: Geisinger et al. (1987).

It is noteworthy that the zeolites have significantly higher thermal motion
than the simpler silicates. The room-temperature equivalent isotopic temperature
factors for Si and O in sodium zeolite A are reported as 1.85 and 3.0 A2,
respectively, compared with 0.49 and 0.99 A? in quartz.
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11.2 Metallic Solids
11.2.1 Specific Aspects of Metals

Metals, and to a lesser extent metallic alloys, tend to crystallize in highly symmetric
space groups. The high symmetry and the relatively simple chemical composition
makes metals and alloys especially suited for Compton scattering studies, in which
the electron momentum distribution is derived from the measurement of the
Compton incoherent X-ray scattering (Williams 1977, Cooper 1985). Compton
scattering occurs as a result of a collision between an X-ray photon and an electron,
and causes a change of momentum of the photon that is dependent on the
momentum of the scattering electron. The dependence of the Compton scattering
on the direction of the scattering vector of the photons can be analyzed to yield
the three-dimensional momentum distribution against which theoretical calcula-
tions can be tested. Other techniques of great importance in the study of the
electronic structure of metals, beyond the scope of this treatment, include Fermi
surface mapping through positron annihilation measurements.

The outer electrons in metals such as Li and Na have a very low ionization
energy, and are largely delocalized. Such electrons are described as constituting a
“nearly free electron gas.” It may be noted, though, that this description is
somewhat misleading as the behavior of the electrons is dominated by the
exclusion principle, while the molecules in normal gases can be described by
classical statistical mechanics.

The Fermi surface plays an important role in the theory of metals. It is defined
by the reciprocal-space wavevectors of the electrons with largest kinetic energy,
and is the highest occupied molecular orbital (HOMO) in molecular orbital
theory. For a free electron gas, the Fermi surface is spherical, that is, the kinetic
energy of the electrons is only dependent on the magnitude, not on the direction
of the wavevector. In a free electron gas the electrons are completely delocalized
and will not contribute to the intensity of the Bragg reflections. As a result, an
accurate scale factor may not be obtainable from a least-squares refinement with
neutral atom scattering factors.

The bonding in transition metals involves d orbitals, which are considerably
more directional. In transition metals, Fermi surfaces are markedly nonspherical,
and cohesive energies show regularities which can be understood in terms of
bonding involving hybridized orbitals. The cohesive energies of transition metals
(defined as the energy relative to the free atoms) are found to increase sharply in
a row of the periodic table, up to about the middle of the row, near Cr, Mo, and
W, for the first, second, and third rows, respectively, and then decrease towards
the right of the periodic table. The increase in the first half of the rows can be
explained in terms of half-filled or less-than-half-filled d bands, and the decrease
on the right-hand side by the occupancy of antibonding orbitals. This is completely
analogous to the reduced bond order of the O, molecule compared with N,, and
the decrease in the metal-sulfur bond strength toward the right of the periodic
table in transition metal sulfides, discussed in the previous chapter. The exact
nature of the hybrid orbitals forming the bands in metals differs with crystal
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FIG. 11.6 The closed-packed arrangement of atoms, showing
an octahedral interstitial hole in the center of the drawing,
surrounded by three tetrahedral holes.

structure, but the use of even g-type (d and s) orbitals is favored energetically
(Adams 1974).

Because the effect of bonding on the electron density of metals is relatively
small, charge density studies on metals require very careful collection of intensity
data. The number of available studies is limited, but important conclusions have
been reached.

11.2.2 The Charge Density in Beryllium Metal

11.2.2.1 The Structure of Beryllium Metal

Beryllium is a hexagonally closed packed (hcp) metal in which each Be atom is
surrounded by 12 neighbors, six of which are located in a plane perpendicular to
the hexagonal ¢ axis, and three each in the planes above and below the central
plane. In this packing arrangement there are tetrahedral holes directly above and
below each Be atom at 0.625 times the interplanar spacing, and octahedral holes
at a height of half the interplanar spacing directly above and below the triangies
formed by three in-plane Be atoms (Fig. 11.5).

Two of the four electrons of the beryllium atom are valence electrons. The
bonding in the metallic solid must be accomplished by a combination of 2s and
2p orbitals; if not, the s band would be completely filled and Be would be an
insulator, or perhaps not a room-temperature solid at all. In the orbital description,
the two valence electrons of each Be atom participate in two 2s2p hybrid electron
pair bonds, spread over the 12 nearest neighbors of the hcp structure.

11.2.2.2 Experimental Data

Beryllium metal has been the subject of careful charge density studies. The first
set of X-ray data containing 27 reflections was collected with AgKa radiation by
Brown (1972), using two single-crystal plates. In subsequent work, Larsen and
Hansen (LH) (1984) used a small crystal of 0.1 x 0.25 x 0.30 mm and both MoK«
and AgKa radiation. Short-wavelength neutron structure factors, of importance
for separation of thermal motion and charge density effects, were measured (Larsen
et al. 1980), while the absolute scale was established with eight low-order 0.03 A
y-ray reflections from a '°8Au source (Hansen et al. 1984), and with a larger
i =0.12 A set collected with a !*’Sm source (Hansen et al. 1987).

In a metal like Be, extinction can be a cumbersome effect, especially if
unrecognized, as appears to have been the case of the early 1972 data. It was very
small in the LH data collected on a small sample, but significant in the 0.12 A
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y-ray data, which required a large crystal (1.70 x 1.90 x 2.16 mm) because of the
weakness of the available sources.

11.2.2.3 Charge Density Analysis

The reliable experimental information on the absolute scale and thermal vibrations
of beryllium metal made it possible to analyze the effect of the model on the
least-squares scale factor, and test for a possible expansion of the 1s core electron
shell. The 0.03 A y-ray structure factors were found to be 0.7% lower than the
LH data, when the scale factor from a high-order refinement (sin 8/4) > 0.65 A~ 1)
is applied. Larsen and Hansen (1984) conclude that because of the delocalization
of the valence electrons, “it is doubtful that diffraction data from a metallic
substance can be determined reliably by high-order refinement, even with very
high sin 6/ cut-off values.” This conclusion, while valid for the lighter main-group
metals, may not fully apply to metals of the transition elements, which have much
heavier cores and show more directional bonding.

A k-refinement of the 0.12 A y-ray data reproduces the absolute scale poorly
when the neutron U;; thermal parameter values are used (Hansen et al. 1987). The
discrepancy can be removed by introduction of a core-x-parameter, which refines
t0 Koore = 0.988 (2), corresponding to a 1.2% linear expansion. This is supported
by a similar result obtained with the LH X-ray data, and related to the scale factor
discrepancy noted above. Hansen, Schneider, Yellon, and Pearson (1987), conclude
that without independent knowledge of either the scale or the thermal parameters,
good agreement with experiment can be achieved, but the resulting scale factor
may be in error by as much as 2.5%.

Though the core expansion leads to the appropriate fit, it may not be the
proper explanation for the scale factor discrepancy. Hansen et al. (1987) note that
the expansion of the core would lead to a decrease of 7.5 ¢V in the kinetic energy
of the core electrons, at variance with the HF band structure calculations of Dovesi
et al. (1982), which show the decrease to be only about 1.5eV. An alternative
interpretation by von Barth and Pedroza (1985) is based on the condition of
orthogonality of the core and valence wave functions. The orthogonality require-
ment introduces a core-like cusp in the s-like valence states, but not in the p-states.
Because of the promotion of electrons from s — p in Be metal, the high-order form
factor for the crystal must be lower than that for the free atom. It is this effect
that can be mimicked by the apparent core expansion.

The most conspicuous feature in the deformation density maps is accumula-
tion of charge in the tetrahedral holes of the hcp structure (Figs. 11.6 and 11.7).
This feature is reproduced in all analyses, including that of the earlier 1972 data
(Yang and Coppens 1978), and has a maximum with height of 0.046eA 3
according to the LH X—Xgp oraer and 0.043 eA™? according to the X—y—N
analysis. The peak in the X—y—N density integrates to 0.013 (2) e for the AgKaq,
and 0.012 e for the MoKa data.

Larsen and Harsen describe the bonding as resulting from sp® hybridization
with one lobe (s + 3p,) parallel to the ¢ axis, and the other three lobes pointing
into the tetrahedral holes arranged trigonally below the atom. The latter combine
with the orbitals of adjacent atoms, similarly pointing into the tetrahedral holes.
A second resonance structure is obtained by reflecting the hybrids in the horizontal
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FIG. 11.6 An X—X, .1 order deformation map in the (110) plane of Be metal; z direction is
vertical, showing the electron deficiency along the channels formed by adjoining octahedral
holes, marked O, and the surplus of charge in the bipyramidal space formed by two
tetrahedral holes, marked T. Contours are at 0.015 eA 3 intervals. Negative contours are
broken lines. The first solid line is the zero contour. Source: Larsen and Hansen (1984).

(b)

FIG. 11.7 An X—X,h0raer deformation map in sections parallel to (001). Contours are
as in Fig. 11.6. (a) Section at z = 0.75 containing the atomic position. (b) Section at
z = 0.625 through the tetrahedral position (marked T). Source: Larsen and Hansen (1984).

plane, leading to a (s — 3p,) hybrid, and three hybrids pointing up into the
tetrahedral holes at 0.625 the interplanar spacing above the central atom. This
attractive scheme is in agreement with the density observed in the tetrahedral holes
and the complete absence of density in the octahedral holes of the structure. The
bonding through the tetrahedral holes is reminiscent of the two-electron, three-
center bonds encountered in electron-poor molecules such as B,H4. As each
tetrahedral hole has four neighbors and the two Be valence electrons are
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distributed over eight equivalent hybrids in the proposed scheme, it can be
described as one-electron, four-center bonding.

A number of theoretical calculations are available for comparison with the
experimental results on Be metal. The increase of the valence density in the
tetrahedral holes is well reproduced by both the early augmented plane wave
(APW) calculation of Inoue and Yamashita (1973), and the all-electron HF-LCAQO
calculation of Dovesi et al. (1982), but the latter gives somewhat better agreement
with the experimental results.

The comparison between theory and experiment may alternatively be based
on the (static) deformation atomic form factors for each of the reflections (ie.,
Af = fuiue — fiphesicar)» as was done by Hansen et al. (1987). Unlike the direct
comparison of the valence density distribution, the form-factor analysis is affected
by the theoretical treatment of the core electrons. They are not specifically inctuded
in pseudopotential calculations, though the potential due to the core electrons is,
of course, accounted for. The core electron scattering must therefore be added
into the theoretical form factors. The linearized augmented plane-wave (LAPW)
calculation of Pindor et al. (1986) includes all electrons, but uses the local density
approximation, which is less successful when the density is rapidly varying, as it
is in the core region. In general, this calculation, the local pseudopotential
calculation of Chou et al. (1983), and the nonlocal density functional calculation
of von Barth and Pedroza (1985) agree well with each other and with experiment
in the low-order region. The von Barth and Pedroza values agree better with
experiment at high angles beyond sin 8/4 ~ 0.60 eA ™!, due to the correction for
nonorthogonality of the s and p states mentioned above. The high-angle form
factors are typically 0.02 ¢ below the free atom values.

11.2.3 The Charge Density in Vanadium and
Chromium

Vanadium and chromium have body-centered cubic (bcc) structures, in which
each atom is surrounded by eight nearest neighbors along the cube diagonals and
six next-nearest neighbors along the cube axial directions. In the bce structure,
the difference between the nearest and next-nearest contacts is only 17% of the
nearest-neighbor distance. Hybrids compatible with the bcce structure are sd® and
d* for the nearest neighbors, and d> for the next-nearest neighbors (Altmann et
al. 1957).

Careful measurements of the structure factors of vanadium (Ohba et al. 1981)
and chromium (Ohba et al. 1982) up to sin §/4 = 1.72 A~ !, using AgKa radiation
and small spherical crystals (0.2 mm diameter), have been reported. The bcc
structure of these metals leads to pairs of reflections such as (330/441), (431/510),
at identical values of sin /4, which have the same intensity for a structure with
one spherical atom per lattice point. This is no longer true when the t,, and e,
orbitals of the cubic site are no longer equally occupied. This is easiest seen as
follows.

The angular functions for the e, orbitals are given by (appendix D)

Y20 = (5/16m)'2(3z2 — 1)

Vary = (15/47t)”2(x2 _ yZ)/z (116)



262 X-ray Charge Densities and Chemical Bonding

where x, y, and z are direction cosines. Summing of the squares of these
distributions gives an angular density function which peaks in the six directions
of the cubic axis, and is described by

d(e,) = (5/8m)[3z* + 3y* + 3z — 1] (11.7)
The corresponding expressions for the t,, orbitals are
Yar+ = (15/4m)!2xz
Va1 - = (15/4m)'2yz (11.8)
V22— = (15/4m)!2xy
which gives, for the total ¢,, density,
d(t2,) = (15/4m)[(x2)* + (y2)* + (xy)*] (11.9)

The t,, density is zero where two of the direction cosines x, y, and z are zero,
that is, in the planes of the coordinate axes, but peaks along the eight cube
diagonals. The density functions are Fourier-transform invariant, as discussed in
chapter 3, and expressed by the equation

Simp(S) = [ [dimpl(6, D)) = 4ni'{j; > di (B, 1) (3.43)

For reflections at the same sin /4, the radial scattering factors {j,> are equal,
but the angular factors d,,, differ for different occupation of the t,, orbitals.
According to Eqs. (11.7) and (11.9), the scattering factor f(e,)~3(h*+k*+1*)—1,
and f(t5,) & (hl)? + (kl)* + (hk)®. As a result occupancy of the e, orbitals in excess
of the spherical population increases the intensity of reflections with larger values
of h* + k* + I*, the scattering vectors of which are closer to the directions of the e,
lobes, while occupancy of the t,, orbitals beyond 3 electrons increases the
reflections with larger values of (hl)?> + (kI)* + (hk)? for which h* + k* + [* is
smaller.

Experimental and theoretical ratios for paired reflections in Cr are listed in
Table 11.1. The ratios are listed such that the reflection with the smallest value of
h* + k* + 1* is in the numerator. It is evident that the reflections with smaller
values of h* + k* + I* are more intense by 1-2.5%, indicating a preferential
occupancy of the t,, orbitals, which in the bcc structure are directed towards the
nearest neighbors.

This conclusion is confirmed by both experimental and theoretical deforma-
tion density maps. The experimental maps show a positive peak of height
1.4 (1)eA~? at 0.25 A from the Cr nucleus along the cube diagonals (Fig. 11.8),
in qualitative agreement with a tight binding scheme involving d, or s and d
orbitals.

For vanadium, the ratios are smaller, and the dynamic density maps do not
show a distinct maximum in the cube direction. The difference is attributed to
anharmonicity of the thermal motion. Thermal displacement amplitudes are larger
in V than in Cr, as indicated by the values of the isotropic temperature factors,
which are 0.007 58 and 0.00407 A2 respectively. As in silicon, the anharmonic
displacements are larger in the directions away from the nearest neighbors, and
therefore tend to cancel the asphericity of the electron density due to bonding effects.
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TABLE 11.1 Experimental and Theoretical Ratios of the Integrated Intensities of the
Reflection Pairs for Chromium Metal

Experimental Theoretical
Ohba et al. Diana and Mazzone Ohba et al. Rath and Callaway
F?/F?2 (1982) (1972) (1982) (1973)
330/411 1.018 (14)° 1.026 (14) 1.022 1.016
413/510 1.017 (10) 1.030
433/530 1.013 (12) 1.016
442/600 1.025 (16) 1.028 (14) 1.038
532/611 1.013 (11) 1.025

*The ratio of the paired reflections h,k,I, and hyk,l, is defined as F2(h,k!,)/F*(h,k,l,), where the value of
It + kt + It is always selected to be less than that of h} + k§ + I3.
® Standard deviations of the experimental values are shown in parentheses.

Source: Ohba et al. (1982).

More quantitatively, the effect of the thermal motion follows from the
anharmonic thermal motion formalisms discussed in chapter 2. In the bec
structure, the relevant nonzero anharmonic term in the one-particle potential is
the anisotropic, cubic site-symmetry allowed, part of u/u*u'u™ in expression (2.39).
The modified potential for the cubic sites is given by (Willis 1969, Willis and Pryor
1975)

V(uguyus) = Vo + 6[(ut + uj + ud) — 33 + u3 + u?)?] (11.10)

in which & is the coefficient of the fourth-order term in the expansion (2.39).
Since the anharmonic term is small relative to the leading harmonic term, the
corresponding temperature factor can be written as

T;nharmanic(H) = T{larmonic(l-l){1 - CaTS[(h4 + k4 + I4) - %(hz + kz + [2)2]}
(11.11)

in which C is a constant, dependent on the harmonic potential and the lattice
constant of the material, and the T° dependence follows from the temperature
factor expansion, as in Eq. (2.43).

The second term in square brackets is the same for two members of a reflection
pair. Thus, since the correction term is small,

T,/T, =1+ CST3[(h4 + k3 + 15 — (P + k¥ + D] (11.12)

The coeflicient ¢ will be negative, because the potential is softened in the
direction of the more remote next-nearest neighbors. Thus, the larger displacement
corresponds to a relative increase in the scattering for the second member of the
reflection pair with the larger value of (h* + k* + 1*), and therefore to a reduction
of the ratios listed in Table 11.1.
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FIG. 11.8 (a) A section of the difference synthesis through the Cr nucleus, parallel to the
(110) plane. Contours are drawn at intervals of 0.2 eA =2, (b) Theoretical contour map of
valence electron distribution on the (110) plane for chromium metal. Contours are drawn
at intervals of 0.5 ¢eA ~ 3. The lobes point towards the nearest neighbors in the body-centered
cubic structure. Source: Ohba et al. (1982).

11.2.4 The Charge Density in Copper

Copper is a face-centered cubic (fcc) metal. Band structure calculations show the
valence bands to be copper d bands and hybrid bands of sd, pd, and sp character.
The hybridization is essential for the conductivity of copper, as some of the bands
cross the Fermi surface and are thus only partially occupied (K. Schwarz, private
communication).
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Schneider, Hansen, and Kretschmer (SHK) (1981) have measured the 19
reflections with sin /4 < 0.7 eA =3 with 0.03 A y-radiation. Deformation densities
based on these reflections show a small accumulation of charge of height 0.19 eA ™3
at 1/4 1/4 0 and equivalent positions, which is between nearest neighbors located
along the [110] directions, as well as an accumulation of similar height, but
somewhat more extended, in the voids between the atoms at 1/4 1/4 1/2. This
seems fully compatible with a hybrid bonding model.

The SHK low-order structure factors are systematically lower than those from
a series of theoretical calculations on copper. Mackenzie and Mathieson (MM)
(1992) have reanalyzed both the theoretical and the experimental results, and
conclude that the absolute scale of the SHK data may have been affected by the
use of the Darwin extinction theory for an intentionally deformed (to intercept
the whole divergence of the y-ray beam) single crystal. They compare an
“educated” mean over all available X-ray and y-ray structure factors, and structure
factors derived from electron diffraction,® with the results of six theoretical
calculations. Like for beryllium, the core electrons are not included in the available
band structure calculations. They must be added a posteriori to allow comparison
with the experimental structure factors. The most detailed calculation, by Ekardt
et al. (1984), gives an excellent match to the photoemission spectra, which depend
on the valence-state energy levels, but fits the X-ray data not as well as the less
sophisticated calculations. Mackenzie and Mathieson show that the difference
between the Ekardt et al. theoretical structure factors and the average over three
other sets behaves very much like a fraction of the Cu (K + L + M) core electron
scattering factor (Fig. 11.9). They argue convincingly that a minor modification of
the core contribution, or equivalently, a change in the pseudopotential which
represents the effect of the core electrons, would improve the fit to the diffraction
data but would not affect the relative energy levels which explain the photoelectron
results. In other words, theoretical structure factors from band structure calcula-
tions will not be reliable in the high-order region, which is dominated by the core
scattering. It is also pointed out by MM that, rather than compare theoretical
and experimental results, it is more appropriate to use high-quality, absolute-scale
experimental structure factors in a complementary fashion, to test the appropriate-
ness of the pseudopotential used in the band structure calculations.

11.2.5 Intermetallic Compounds and the
Critical-Voltage Electron Diffraction Method

11.2.5.1 Electron Structure Factors

Much of the available experimental information on intermetallic compounds
comes from high-energy electron diffraction (HEED) measurements. In electron
diffraction, the electron beams interact with the electrostatic potential in the
crystal. The electron structure factor is therefore directly dependent on this

3 See section 11.2.5.1 for the relevant expressions.
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FIG. 11.9 Plots against (sin 6)/4 (A™") of the reflections for Cu up to (333/511). (a) The
differences between the value of Ekardt et al. (1984) and the average of the four earlier
theoretical calculations; (b) 1.5% of the argon core of Cu?* from International Tables for
X-ray Crystallography (1974); (c) 1% of the Cu core of Ga from International Tables for
X-ray Crystallography (1974). Source: Mackenzie (1992).

potential including a nuclear contribution, as defined by Eq. (8.3). In SI units, and
using the spherical-atom and isotropic-thermal-motion approximations, the elec-
tron structure factor is given by the Mott—Bethe expression

lel

VH) = Y (2, — f¥(H)]/H* exp (— B; sin? 8/4*) exp 2niH"r;)

47[280 V\mi\ cel)
(11.13)

in which e is the electron charge, ¢, is the permittivity of free space (see chapter
8), Z is the atomic number, and f is the X-ray scattering factor of the ith atom.
Conversion of an electron structure factor, measured at temperature 7, to the
corresponding X-ray structure factor involves subtraction of the nuclear terms in
Eq. (11.13). It is clear that this requires knowledge of the structure and of the
atomic temperature factors B;.

In particular the critical-voltage technique (Spence 1993) can provide low-
angle structure factors with an estimated accuracy as good as 0.1%;. It requires an
electron microscope whose accelerating voltage can be continuously varied over
a large range, typically 100 kV to 1 MeV. Because of the interaction between the
incident and diffracted beams in the crystal, the intensity of a second-order
reflection will show a minimum as a function of the accelerating voltage, provided
that V(H)? > V(2H)?, where V(H) is the electron structure factor defined by Eq.
(11.13). The position of the intensity minimum depends sensitively on the ratio of
the first- and second-order electron structure factors. It is commonly assumed that
the second-order structure factor can be described in the independent-atom
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approximation, and that the ratio can be corrected properly for the difference in
the temperature factors of the two reflections. With this assumption, the bonding
effects in the first-order reflection can be analyzed.

11.2.5.2 The Charge Density in f'NiAl

The alloy f'NiAl is a solid with a CsCl-type structure in which one atom is located
at the corners, and the second atom at the center of the unit cell. The valence-
electron to atom ratio is often quoted as 1.5, using a counting scheme in which
the transition metal has zero valence and the Al is considered as trivalent.

In such models, the bonding is considered to be partially ionic with a charge
transfer from Al to the Ni 3d valence band. To explain the properties of ' NiAl
at a more sophisticated level, Fox and Tabernor (1991) measured four low-angle
structure factors by the HEED critical-voltage technique. The deformation density
based on these four reflections shows a depletion of density around both the Ni
and Al atoms, and a buildup of about 0.13 eA =2 along the [111] direction halfway
between Ni and Al nearest neighbors.

The electron diffraction study was complemented by an all-electron theoretical
calculation of Lu, Wei, and Zunger (LWZ) (1992), using the local density
approximation for the exchange and correlation terms in the Hamiltonian. They
find agreement within ~0.6%, between the calculated and dynamic structure factor
values for the lowest three reflections, (100), (110), and (111). But for (200), with
sin /4 = 0.3464 A~!, the discrepancy is as large as 1.7%. The discrepancy is
attributed to insufficiently accurate knowledge of the temperature factors in this
diatomic crystal, which affect the derivation of the X-ray structure factor from the
electron diffraction measurement, as well as the calculation of the dynamic
theoretical structure factors needed for the comparison with experiment. For the
monoatomic Si crystal for which the B values are well known, the agreement is
4-20 times better than for §'NiAl and within 0.2 e atom L.

As is not surprising, given the experience gained with X-ray charge densities,
the deformation electron density of f'NiAl is significantly modified when the
higher-order Fourier terms, not measured by HEED, are added. In the theoretical
maps, there is still a slightly electron-positive region halfway between the Ni and
Al, but the dominant features are lobes on the Ni atom along [111], pointing
towards the Al atoms, much like the Cr metal deformation density of Fig. 11.8.
Furthermore, there is electron buildup at the Ni and depletion at the Al positions,
in support of an ionic contribution to the bonding. It was concluded by LWZ
that NiAl exhibits both ionic and covalent bonding components, with the former
dominating in the deformation density. The orbital populations from the calcula-
tion show a loss of Al sp charge of 0.27 e and a gain of Ni pd charge of 0.23 e.
The strong directionality of the bonding explains why it is extremely difficult to
disorder this alloy.

11.2.5.3 The Charge Density in y-TiAl

The alloy y-TiAl is a tetragonal solid in which face-centered Ti + Al (001) planes
alternate, with a relative displacement of 1/2 along the a (or, equivalently, b) axis
(Fig. 11.10). The TiAl alloy is considered a covalent intermetallic compound,
compared with the more ionic character of NiAl. Lu et al. (1994) compared the
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. D FIG. 11.10 Structure of y-TiAl. Dark spheres: Ti; light
spheres: Al.

electron diffraction values of seven low-order X-ray structure factors with theoreti-
cal results, using the same methods as applied to NiAl. The agreement for the
low-order structure factors, derived with a single thermal parameter for both
atoms, is within 0.7%, with a largest discrepancy of 0.022 e atom ™ '. The deviation
of the true structure factors from the spherical atom values is 1.1-1.5% for the
lowest-order reflections, which, while referred to as a substantial difference by the
authors, illustrates the high accuracy required for the charge density analysis of
intermetallic compounds. An analysis of the electron density based on the
low-order reflections only, leads to incorrect conclusions, but the fact that the
experimental and theoretical structure factors agree gives confidence in the analysis
of the high-resolution theoretical density.

The overall bonding pattern in y-TiAl is described by nonspherical depletion
of electrons from both the Al and Ti sites, with a considerable buildup in the d,,
fobes on the Ti atoms pointing towards nearest-neighbor Ti atoms along the [110]
directions. This evidently suggests directional 3d-bonding between the Ti atoms,
rather than between the metal and Al atoms as in f'NiAl. The bonding between
the nearest-neighbor Al atoms in the all-Al (001) planes, on the other hand, appears
metallic, without pronounced accumulations of negative charge density. There is,
however, a slight (<0.02 eA ~3) density buildup above and below the Al atoms,
halfway between the Al and Ti (001) planes.

The picture that emerges from the available studies of transition metal bonding
in metals and alloys is that of bonding lobes directed towards nearest neighbors,
indicating Cr—Cr, V—V, Ti—Ti, and Ni—Al, but not Ti—Al interactions of at
least partially covalent nature.

11.3 lonic Solids

11.3.1 Do Completely Ionic Solids Exist?

The possibility of assessing the ionicity of atoms in crystals from the diffraction
pattern has been among one of the most controversial topics of X-ray analysis*

* For some of the discussions, see Coppens and Feil (1991).
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(b)

FiIG. 11.11 Electron-density difference maps on Li,BeF, calculated with all reflections <
sin /4 = 0.9 A~? (81 K). (a) Based on the neutral atom procrystal model, (b) based on the
ionic model. Contour levels are drawn at intervals of 0.045 eA ~3.5 Full lines for positive
density, dashed lines for negative and zero density. The standard deviation, estimated from
[2Z6%(F,)]Y2N, is 0.015 eA 2. Source: Seiler and Dunitz (1986).

5 In the original publication, the contour interval was erroneously specified as 0.015¢A ™2, P. Seiler
and J. D. Dunitz, private communication.
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James 1948, in his famous treatise on X-ray diffraction, stated that

any attempt to determine the state of ionization of the atoms in a crystal by means
of the measurement of the atomic scattering factors is likely to fail, since the curves
will differ appreciably only at angles for which no spectra exist.

This overly pessimistic conclusion has been refuted by many studies done in
the past decades, including those described in this volume. Many crystals have
much larger unit cells, and therefore produce a considerable number of reflections
at small sin /4 values below 0.25 A~ !, Examples are the silicates discussed above,
for which atomic charges are now routinely obtained with high-quality data. It is
worth noting that a change in net charge on an atom is accompanied by a radial
expansion or contraction of the valence shell, the effect of which persists to higher
scattering angles.

The question of the measurement of ionicity was specifically addressed in a
study on lithium tetrafluoroberyllate Li,BeF, by Seiler and Dunitz (1986). The
primitive rhombohedral unit cell of this solid has a size 30 times larger than that
of the primitive cell of LiF, resuiting in 40 reflections with sin /4 < 0.25 A~ 1.
Alternative refinements with neutral and ionic scattering factors for Li, Be, and F
led to essentially identical agreement factors when all reflections were considered.
However, for 11 weak, low-order reflections with sin /4 < 0.25 A~ the R-factors
were 0.043 for the neutral atom and 0.125 for the ionic model, a rather striking
difference supporting the neutral atom model, and confirmed by further analysis
of a larger low-order data set. The difference densities for both models (Fig. 11.11)
show significant bond peaks in the Be—F bonds, indicating a covalent contribu-
tion, and some density between Li and F.

Seiler and Dunitz point out that the main reason for the widespread
acceptance of the simple ionic model in chemistry and solid-state physics is its
ease of application and its remarkable success in calculating cohesive energies of
many types of crystals (see chapter 9). They conclude that the fact that it is easier
to calculate many properties of solids with integral charges than with atomic
charge distributions makes the ionic model more convenient, but it does not
necessarily make it correct.

With the topological analysis of the total charge density, the distinction
between a covalent and a closed-shell ionic interaction can be based on the value
of the Laplacian and its components at the bond critical point. Such an analysis
will be most conclusive when done on a series of related compounds, analyzed
with identical basis sets, as the topological values of the model density from
experimental data have been found to be quite dependent on the choice of basis
functions.
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Electron Density Studies of Molecular
Crystals

12.1 Why Molecular Crystals?
12.1.1 The Importance of Molecular Crystals

Small molecules consisting of light-, few-electron atoms were the first species
beyond atoms to yield to quantum-mechanical methods. Similarly, crystals of small
light-atom molecules have served as most useful test cases of charge density
mapping. The small number of core electrons in first-row atoms enhances the
relative contribution of valence electron scattering to the diffraction pattern. Early
studies, done just after automated diffractometers became widely available, were
concerned with molecular crystals such as uracil (Stewart and Jensen 1967),
s-triazine (Coppens 1967), oxalic acid dihydrate (Coppens et al. 1969), decaborane
(Dietrich and Scheringer 1978), fumaramic acid (Hirshfeld 1971), glycine (Almlof
et al. 1973), and tetraphenylbutatriene (Berkovitch-Yellin and Leiserowitz 1976).
While thermal motion is often pronounced in molecular crystals, advances in
low-temperature data collection have done much to alleviate this disadvantage.
In recent years, subliquid-nitrogen cooling techniques have been increasingly
applied.

Among the most interesting aspects of molecular crystals are the influence of
intermolecular interactions on the electronic structure. Physically meaningful
Coulombic parameters pertinent to a molecule in a condensed environment can
be obtained from the diffraction analysis, and can be used in the modeling of
macromolecules. The enhancement of the electrostatic moments relative to those
of the isolated species has been noted in chapter 7. But, beyond these considera-
tions, molecular crystals are important in their own right. For example, crystals
of aromatic molecules substituted with n-electron donor and acceptor groups are
among the most strongly nonlinear optical solids known, considerably exceeding

271
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the nonlinearity of inorganic crystals such as potassium titanyl phosphate (KTP);
while mixed-valence organic components of low-dimensional solids can become
superconducting at low temperatures. The relation between such properties of
molecular crystais and their charge distribution provides a continuing impetus for
further study.

12.1.2 The Suitability Factor

The suitability of light-atom crystals for charge density analysis can be understood
in terms of the relative importance of core electron scattering. As the perturbation
of the core electrons by the chemical environment is beyond the reach of practically
all experimental studies, the frozen-core approximation is routinely used. It
assumes the intensity of the core electron scattering to be invariable, while the
valence scattering is affected by the chemical environment, as discussed in chapter
3. As an order-of-magnitude approximation, we write

unit cell unit cell

<Ffore> = Z fgore,i = Z nczore.i (121)

where n,,. ; is the number of core electrons of atom i. The relevant measure for
the importance of the core scattering is the core-scattering intensity per unit
volume. Its inverse may be selected as a gauge of the suitability of a crystal for
X-ray charge density analysis (Stevens and Coppens 1976).

S = ————V——-— (12.2)

unitcell ,2
Zi ncore.i

The value of the suitability factor S varies from typically 3-5 for first-row atom
organic crystals to 0.1-0.3 for metals and alloys of first row transition metal
elements. (Table 12.1). The implication is that much better accuracy will be

TABLE 12.1 Suitability Factors for Various Crystals

14 ViZ Y nie S
Formamide 223.6 559 12 4.7
«-Glycylglycine 579.0 1448 36 40
«-Oxalic acid dihydrate 2554 127.7 32 40
Tetracyanoethylene 897.8 149.6 40 3.7
Cr(CO),C¢H, 419.5  209.8 372 0.56
Cr,(0,C,H;),-2H,0 13922 348.1 720 0.48
Ni(C,H,)(CsHs), 1058.6  264.7 696 0.38
Cl, 225.2 56.3 200 0.28
S (orthorhombic) 32929 2058 800 0.26
Si 157.5 19.7 100 0.19
Al 66.4 16.6 100 0.17
V,Si 105.7 52.85 1072 0.05

Source: Stevens and Coppens {1976).
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required to obtain meaningful results on crystals with low § values. In very low-S
crystals containing second or third-row transition metal elements, for instance,
electron density effects of anharmonic motion may dominate the asphericity in
the density maps.

12.1.3 The Oxalic Acid Project

To examine the reliability of X-ray charge densities at a time of rapid development
of new methods, the Commission on Charge, Spin and Momentum Densities of
the TUCr organized a project under which a single substance, «-oxalic acid
dihydrate, was studied in a number of laboratories using X-ray, neutron, and
theoretical methods. The report by Coppens on the study, published in 1984,
established unequivocally the qualitative reproducibility of chemically significant
features in deformation density maps, which had not been generally accepted.

Four X-ray and five neutron data sets were collected and three sets of
theoretical calculations were performed. The main discrepancies between theory
and experiment, and among experiments, were found in the heights of the oxygen
lone-pair peaks. Among the theoretical maps, significant discrepancies occurred
also in the bond peak heights. Among the best experiments, peak heights in the
deformation maps were reproducible within 0.15e¢A~!. Large differences in
vibrational parameters were observed, indicating deficient temperature calibration
and systematic bias of the parameters in some of the experiments. Positional
parameters were found to be reproducible within 0.001 A, with average discrepan-
cies between some experiments being as low as 0.0005 A.

With the more widespread use of subnitrogen cryogenic temperatures, use of
smaller samples made possible by brighter sources, and rapid developments in
detector technology and computational methods, the conclusions of the oxalic
acid project are now of mainly historical importance. However, the project remains
an example of the value of collaborative efforts in establishing the validity of a
scientific method.

12.2 Transferability of Charge Density Parameters Among
Related Atoms

The systematic bias introduced in the positional and thermal parameters by the
spherical-atom approximation may be reduced, or at best eliminated, by the use
of improved scattering formalisms. The development of aspherical atom scattering
factors, typical for an element in a specific bonding environment, would be a highly
desirable achievement. To what extent are atomic or fragment charge densities
transferable? Can we obtain the charge density of macromolecules by a buildup
of densities of atoms or small fragments?

Transferability of atomic densities was tested by Brock et al. (1991), who
applied atomic charge density parameters from an accurate low-temperature study
of perylene (I) to data collected at five and six different temperatures on
naphthalene (II) and anthracene (I1I), respectively. The molecules are all aromatic
hydrocarbons. To reduce the number of variables, all H atoms were assigned
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identical deformation densities, and the number of independent carbon atoms was
constrained as indicated in the schematic. Only three of the four C-atom types of
perylene, and the H atom, occur in the smaller naphthalene and anthracene
molecules.

b b
a a
d b d
Perylene (I) Naphthalene (II) Anthracene (I1I)

A difficulty in transferring charge density parameters in this manner is that
the reconstructed molecules may no longer be neutral. In the hydrocarbon study,
this difficulty was circumvented by repeating the perylene refinement for each case
with constraints designed to maintain electroneutrality in the smaller hydrocarbon
molecule to which the aspherical scattering factors are transferred. The aspherical
atom refinements with the perylene-derived aspherical scattering factors lead to a
systematic increase of the in-plane molecular translation amplitudes, and a
decrease in those normal in the plane. This is because the charge density is more
diffuse in the plane, undoubtedly due to the bond overlap density, but more
concentrated in directions perpendicular to the plane. In the spherical-atom
treatment, such bonding features introduce systematic bias in the vibrational
parameters, in accordance with earlier studies discussed in chapter 3. This is an
example of the type of bias that could be reduced by the introduction of standard
aspherical-atom scattering factors.

The difficulty of transferring charges between molecules was avoided in a later
study by Pichon-Pesme et al. (1995a), who transferred the atomic asphericity but
not the deviations from atomic neutrality and atomic expansion/contraction
represented by the x parameter. The experimental charge densities in the peptide,
phenyl, and methyl groups in the polypeptides N-acetyl-L-tryptophan methyl-
amide, N-acetyl-o,f-dehydrophenyl alanine, and Leu-enkephalin were used as a
starting point. From the least-squares results, Pichon-Pesme et al. constructed a
data bank of transferable population parameters for three different types of carbon
atoms, the hydrogen atom, the peptide nitrogen, and C=O oxygen atoms.
Remarkably, a small number of populated aspherical density functions is adequate
to describe the density of each of these atoms (see Table 12.2). For the phenyl sp?
carbon atoms, for exampile, the only significant nonzero deformation parameters
are the P,, and P;;, populations. The negative population of the P,, spherical
harmonic function describes the contraction of the density in the direction
perpendicular to the plane of the three bonds, as in the hydrocarbons described
above, while the positive value of the Py, , parameter represents the accumulation
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TABLE 12.2 Atomic Multipole Parameters from Averaging over Three Polypeptides

C O N C(sp?), C(sp®), B C(sp?) H
P, 0.12 ~0.10 0.15
Py —-0.32 —-0.06 —0.23
Py 0.13 ~0.06
Py s ~0.16 ~0.19
Py, . —021 —024
Py, 0.43 0.27 0.25 0.21 —-0.32

Parameters not listed are equal to zero. C': carbon atom in C=0 group; O: oxygen atom in C=0 group; N: nitrogen
atom in peptide bond; H; generalized hydrogen atom; C(sp®)ux; carbon atoms bonded to two C, one H, and one N
atom, C(sp®)#: bonded to two C and two H atoms; C(sp?): phenyl carbon atom. Coordinate systems are defined in
Fig. 12.1.

of density in the three bonds. The negative population of the d,, spherical
harmonic is also evident for the C’ atom of the C=0O group, which similarly is
linked to its neighbors by three coplanar bonds.

The deformation of the peptide nitrogen atom is described by a single d;;,
(=x> — 3xy?) function, the z axis being perpendicular to the C—N-—C plane. The
deformations of three types of atoms are illustrated in Fig. 12.2.

As a test, the standard aspherical form factors in their proper orientations were
applied in a refinement of both room temperature and low temperature (125 K),
accurate, but low-resolution, data (0.7 A~!) on the tripeptide pGlu-Phe-D-Pro-
¢[CN,]-Me (PPP). The improvements on introduction of the aspherical scatter-
ing factors are dramatic, the R-factors being reduced by 30-40%;, without the
introduction of additional variables. Significant adjustments in the anisotropic

[_x'y x\/}' G
G
PC @

Uy é@ix

FIG. 12.1 Coordinate systems for the standard aspherical atom form factors given in
Table 12.2.
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sp3 carbon
(a)
= =0 sp? oxygen atom

(b)

A C

~—  sp2carbon

J/ P

(c)

FIG. 12.2 Static deformation densities for (a) sp® carbon atom, (b) oxygen atom, and (c)
sp? carbon atom in C==0 double bond. Contour interval is 0.05 eA ~>. Negative contours
are dashed lines; zero contours are omitted. Source: Pichon-Pesme et al. (1995)
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thermal parameters occurred, while changes in the positional parameters were
relatively small, but not insignificant (<0.009 A). In PPP, the U,; thermal
parameters are reported to decrease on the average by 10-20%;, upon introduction
of the standard aspherical atom form factors, though for the sp* hybridized atoms
an increase in the direction perpendicular to the bonds must occur, because of the
contraction of the static atom density represented by the negative d,. population.

In subsequent work by the same authors, non-neutrality of the standard atoms
was allowed by addition of a transferable P, valence-shell monopole population,
with neutrality being maintained by a slight adjustment of the hydrogen charges,
and k parameters refined after the transfer (Pichon-Pesme et al. 1995b).

The introduction of standard aspherical-atom scattering factors leads to a
very significant improvement in Hirshfeld’s rigid bond test. The results are a
beautiful confirmation of Hirshfeld’s (1992) statement that “an accurate set of
nuclear coordinates” (and thermal parameters!) “and a detailed map of the
electron density can be obtained, via X-ray diffraction, only jointly and simul-
taneously, never separately or independently”.

A related theoretical approach to charge density transferability has been
developed by Mezey and collaborators (Walker and Mezey 1993, 1994). But rather
than composing a molecule of standard pseudoatoms, the density of large
molecules, including proteins, is constructed from the density of a number
of standard theoretical fragments. The fragment densities are defined by the
distribution

p(r) =3 3 B duDd,(r) (3.7

but with P, (fragment) = P, (molecule)/2 if either ¢, or ¢, is centered on an atom
not belonging to the fragment. The method is referred to as MEDLA, the
molecular electron density Lego approach. It differs from the Lego construction
in that the building blocks are diffuse like pseudoatoms, rather than having sharp
boundaries like Lego blocks.

The main purpose of the method is to define molecular shapes through
isodensity surfaces. Tests on a number of small molecules show that this aim is
achieved with a great efficiency in computer time. Discrepancies between MEDLA
densities and theoretical distributions, averaged over the grid points, are typically
below 109 of the total density. While this does not correspond to an adequate
accuracy for an X-ray scattering model, the results do provide important
information on the shapes of macromolecules.

12.3 Selected Studies of Molecular Crystais
12.3.1 Bent Bonds

The concept of bond bending was introduced by Coulson and Moffit (1949) in
discussions of angle strain in small-membered ring compounds such as cyclopro-
pane. Since bonding hybrids made up of s and p contributions cannot be at angles
of less than 90°, the hybrids cannot point along the edges of an equilateral triangle
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(b)

FIG. 12.3 (a) Illustration of bond bending due to nonbonded repulsions in an acyclic
molecule. Source: Hirshfeld (1964). (b) Noncolinearity of the three-fold axis of the methyl
group and the O—C internuclear vector as a result of bond bending. a, is the angle defined
by the nuclear positions; «, is the angle defined by the bonding hybrids; 8 and 8’ are the
bond-bending angles at the substituent atoms. Orbital axes are indicated by broken lines.
Source: Eisenstein and Hirshfeld (1979).

as formed by the carbon atoms in cyclopropane. This bending of the bonds leads
to a lowering of the bond energy, which is the cause of the strain in small-
membered ring systems.

Hirshfeld (1964) pointed out that bond bending not only occurs in ring
systems, but also results from steric repulsions between two atoms two bonds
apart, referred to as 1-3 interactions. The effect is illustrated in Fig. 12.3. The
atoms labeled A and A’ are displaced from the orbital axes, indicated by the broken
lines, because of 1-3 repulsion. As a result, the bonds defined by the orbital axes
are bent inwards relative to the internuclear vectors. When one of the substituents
is a methyl group, as in methanol [Fig. 12.3(b)], the methyl-carbon-atom hybrid
reorients such as to maximize overlap in the X—C bond. This results in
noncolinearity of the X—C internuclear vector and the three-fold symmetry axis
of the methyl group. Structural evidence for such bond bending in acyclic
molecules is abundant. Similarly, in phenols such as p-nitrophenol (Hirshfeld
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FIG. 12.4 Deformation density in the central cyclopropane ring of 3 [rotane]. Each carbon
atom in the molecule is part of an additional cyclopropane ring oriented perpendicular to
the central ring. Contour interval 0.05 eA ~3, negative contours broken. Source: Boese et
al. (1991).

1964), the exocyclic C—O bond is bent by C- - -H repulsion, leading to unequal
C—C—O0 bond angles.

The first charge density observation of bond bending in cyclopropane was
from the experimental charge densities of cis-1,2,3-tricyanocyclopropane (Hartman
and Hirshfeld 1966) and 2,5-dimethyl-7,7-dicyanonorcaradiene (Fritchie 1966). It
has been confirmed by a considerable number of other studies, including one on
[3] rotane (Boese et al. 1991) (Fig. 12.4) and those on the three-membered
heterocyclic ethyleneimine (Ito and Sakurai 1973) and ethyleneoxide (Matthews
and Stucky 1971, Matthews et al. 1971), azirinidyl (CH,CH,N) (Cameron et al.
1994) and diazirine (N=NC) rings (Kwiatkowski et al. 1994). Density-based
evidence for the bending in acyclic molecules caused by intramolecular nonbonded
repulsions is available from experimental studies on 2-cyanoguanidine (Hirshfeld
and Hope 1980) and theoretical analysis of 2-cyanoguanidine, hydrazoic acid,
cyanogen azide, formic acid, and diimide (Eisenstein and Hirshfeld 1979). The
results have abundantly confirmed Hirshfeld’s earlier conclusions based on
molecular geometry.

That bond-bending strain is not confined to three-membered rings is evident
from charge density studies on cyclobutane (Stein et al. 1992), cyclobutadiene
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FIG. 12.5 Top: experimental difference density in the Dewar benzene derivative 3,4:5,6-
dibenzo[6.2.2] propella-3,5,9,11-tetraene: (a) in the plane through the central bridgehead
bond and two exocyclic bonds to the bridgehead carbon atoms; (b) in a section
perpendicular to the bridgehead bond passing through its center and through the midpoints
of the cyclobutene double bonds. Contours are at 0.05eA ™3, Zero contours are dotted;
negative contours are dashed. Source: Irngartinger and Deuter (1990), Irngartinger et al.
(1990). (¢) Schematic diagram of Dewar benzene.

(Irngartinger et al. 1977), and the hydro-bis(squarate) anion (Lin et al. 1994). Even
in the deformation density maps of the five-membered pyrrole rings in transition
metal tetraphenyl porphyrins (chapter 10), bond bending is visible.

Of particular interest is the electron density in polycyclic molecules containing
several small condensed rings (see Table 12.3 for molecular diagrams). The central
bond bridgehead bond in bicyclobutane was shown to be bent outwards in both
theoretical and experimental deformation density maps (Eisenstein and Hirshfeld
1981, 1983). The same feature has been observed in bicyclo[2.2.0]hexadiene
(“Dewar benzene”) derivatives (Fig. 12.5). On carboxylate substitution at the
bridgehead carbons, the substituents are found to be oriented such as to give
optimal interaction of their n orbitals with the orbitals of the bent bridgehead
bond (Irngartinger and Deuter 1990, Irngartinger et al. 1990).

The propellanes are a class of compounds with three condensed rings, either
three- or four-membered, sharing a bridgehead bond. In two [1.1.1] propellane
derivatives studied by Seiler et al. (1988), no peaks were observed in the
deformation density of the central bridgehead bonds of lengths =~ 1.58 A, but peaks
at the apex of the inverted (i.e., pyramidal) bridgehead carbon atoms are in
agreement wih electrophilic attack at these positions.
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TABLE 12.3 Topological Analysis of Theoretical Densities on Strained Ring Molecules

Geometric Bond Path Aa Strain
Angle a, Angle o, o, —a, Energy
Molecule Structure Angle (deg) (deg) (deg) (kJmol 1)
Cyclopropane A 1 60.0 78.84 18.84 115
Cyclobutane A 1 1 89.01 95.73 6.72 11
2
Bicyclo[1.1.0] butane “ 3 > 1 1 58.99 72.78 13.79 267
2 60.50 76.62 16.12
3 97.91 105.07 7.16
Bicyclo[1.1.1] pentane “ > 1 74.44 84.72 10.27 285
2 87.20 95.85 8.65
[f.1.1]propellane A 1 61.81 59.37 —244 410
2 1 2 95.98 107.99 12,01
3 59.09 69.09 9.99

Source: Bader (1990).

The large body of information on the electron density of strained cyclic
systems now available can be analyzed quantitatively. An attractive tool for this
purpose is provided by the topological analysis of the density, as discussed in
chapter 6. For a number of theoretical densities, values of Aa, the differences
between the “geometric” bond angle «,, defined by the nuclear positions, and the
angle o, defined by the bond paths, are reproduced in Table 12.3, together with
the molecular strain energies. In the [1.1.1] propellanes, analysis of the theoretical
density shows a critical bond point between the the bridgehead atoms, notwith-
standing the absence of density in the deformation densities. Substitition of
hydrogen at the bridgehead carbon atom breaks the central bond and replaces
the (3, — 1) critical point by a (3, + 1) cage critical point, typical for ring structures.
The ellipticity of the bonds in three-membered rings is much larger than that in
single bonds. According to the theoretical densities, the ellipticity in the ring bonds
of cyclopropane is actually larger than that of the central bond in ethylene,
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indicating a pronounced concentration of density into the ring plane (Bader 1990).
This observation may be compared with the contraction of the density into the
plane of sp? hybridized carbon atoms, noted above in the discussion of atomic
transferability.

12.3.2 Molecular Crystals with Nonlinear Optical
Properties

Molecular crystals are among the most efficient second- and higher-harmonic
generating materials. An external electric field E, upon interacting with a molecule,
will induce a dipole moment u. If the field is strong, the response may not be
linear, in which case the components of y can be developed in increasing powers
of E as described by the expansion (i = 1, 2, 3)

i = po;i + o E; + BiaE;Ey + viu E;ELE + - - (12.3)

In this expression, the Einstein convention of summation over repeated indices
has been followed: y, is the permanent dipole moment, while «;;, B, and y;;, are
the tensorial elements of the linear polarizability, and the second- and third-order
hyperpolarizabilities of the molecule, respectively.

The nonlinear optical properties are due to the higher-order terms in the
expansion. For a molecular crystal, they are both a function of the molecule’s
properties and of the molecular packing. For the odd polarizabilities, represented
by B, and higher-order odd terms, to be nonzero, the crystal must be noncentro-
symmetric. For strong nonlinearity, the relative orientation of the molecules must
favor enhancement of the collective property. A strongly nonlinear molecular
crystal, such as 2-methyl-4-nitroaniline, contains parallel chains of aligned
molecules in the space group Cc.

Robinson (1967) has used the Unsdld approximation for the energy levels to
express the polarizabilities in terms of the electrostatic moments of the ground-
state electron distribution. The expressions have been applied to X-ray charge
densities by Zyss, Baert, and coworkers (Fkyerat et al. 1995; F. Hamzaoui, F.
Baert and J. Zyss, private communication). A detailed description of the derivation
and the approximations involved is beyond the scope of this treatise. However, it
should be mentioned that the severe approximations are made that all excited-state
energy levels are equal, and that the exciting light frequency is equal to zero.

The resulting equations show that the first-order polarizabilities «;; depend
on the second moments of the distribution, while the second-order polarizabilities
B are functions of both the second and third moments of the polarizable body,
as in

=5 (124)

2m
Uy =y My (s o+ s+ 2085) (12.5)
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and
12m?
Bii = i 1 i (12.6)
4m?
Buj = T Quyuy; + #izi)ﬂiij (12.7)

where m is the electron mass, and y;; and y,;, are the elements of the second- and
third-moment tensors of the charge distribution, respectively, as defined in
chapter 7.

The expressions have been applied to the experimental electron distribution
on N-(4-nitrophenyl)-L-prolinyl (NPP) (Fkyerat et al. 1995), and to 3-methyl-4-
nitropyridine-N-oxide (Hamzaoui 1995; F. Hamzaoui, F. Baert and J. Zyss,
private communication). Given the severity of the approximations involved, the
agreement between the charge density results and theoretical isolated-molecule
values for the largest component of § of NPP is quite reasonable. According to
both theory and the charge-density derived result, f,,,, with x being the long axis
of the molecule, is by far the largest element, Theoretical and experimental values
for B, agree within 10%. The theoretical off-diagonal elements are small because
of the approximate symmetry of the isolated molecule, but they are larger for the
molecule in the crystal matrix, a result that may be interpreted as evidence for
the influence of the molecular packing on the optical properties of a molecule.

In general, the experimental charge distribution has the advantage that it
incorporates the effects of intermolecular interaction, which can be pronounced
for suitably aligned molecules, as further discussed below.

12.3.3 The Effect of Intermolecular Interactions on
the Charge Density

12.3.3.1 Hydrogen-Bonding

Oxalic acid dihydrate, studied by several laboratories as part of the IUCr oxalic
acid project, contains a short hydrogen-bond of 2.481 A O- - - O distance, linking
the oxalic acid and water molecules. All experiments are in agreement that the
lone-pair peak of the water-molecule oxygen atom is polarized into the short
hydrogen bond. The deformation density in the plane perpendicular to the
water-molecule plane, bisecting the H-—O—H angle, for one of the experiments
is shown in Fig. 12.6.

The calculational results on oxalic acid dihydrate are not unequivocal
Breitenstein et al. (1983) in an extended basis set HF calculation arrive at an
asymmetry of the H,O oxygen lone-pair electron density away from the donor H
atom in the short hydrogen bond. This is at variance with the experimental results,
and with density functional studies by Krijn, Graafsma, and Feil, (KGF) (Krijn
and Feil 1988, Krijn et al. 1988) which are reported to “clearly indicate the
polarization of the density towards the hydrogen atom of the bond donor” in the
static density maps. In the study by KGF, overall agreement between theory and
experiment is much improved by taking into account the effect of the crystal field,
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FIG. 12.6 Experimental dynamic model deformation density in oxalic acid dihydrate, using
a scale factor derived from a comparison with theoretical results. Contour intervals are at
0.05eA 3, (a) In the plane of the oxalic acid molecule. (b) In the plane perpendicular to
the water molecule and bisecting the H(2)—O(3)—H(3) angle. Source: Dam et al. (1983).

which is simulated by the electrostatic potential exerted by the surrounding
molecules, the multipole expansion of the difference density being used in the
potential calculation. The improved agreement between theory and experiment is
evident both in reciprocal and direct space. The two charge densities agree within
a surprisingly low margin of 0.015e au™3,

Ab-initio SCF calculations on the water molecule in various model complexes
such as (H,0),, Li*-H,0, and (Li*),-H,0 show a depletion of the density of
the lone pair in the internuclear region for long bonds, while for short bonds, such
as Li*---O< =16A and O(H) --O < 2.6-27A, the effect is found to be
reversed (Hermansson 1985), in accordance with the observations on oxalic acid
dihydrate. The induced polarization of the acceptor density towards the Li* or
H atom is apparently still present for the longer distances, but very diffuse and
below the lowest contour of most maps (D. Feil, private communication).
Exchange repulsion opposing the attractive effect becomes important for larger
ions such as K™, for which the oxygen lone pair penetrates the ion’s electron
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cloud. For the hydrogen atom, the exchange repulsion and the polarization act
in tandem; for all distances, a depletion of electron density at the donor H atom
is observed.

Though the more recent results present a consistent pattern, systematic
comparisons of theory and experiment over a larger range of interatomic distances
would be most useful.

It is encouraging that the correction for thermal diffuse scattering (TDS),
applied to the 123 K data set of Dam et al. (1983), has very little influence on the
deformation density, though it significantly affects the thermal parameters, as may
be expected.

The net density redistribution upon hydrogen bonding cannot be deduced
from the experiment alone, as the density of the free molecules cannot be measured
by X-ray diffraction. The effect of the coordination on the water molecule density
is nevertheless evident because of the deviation from the idealized symmetry of
the water molecule.

Hydrates containing several water molecules in different environments are a
fruitful subject for the analysis of hydrogen bonding. Magnesium thiosulfate
hexahydrate MgS,0,-6H,0O contains three independent water molecules in
different environments (Bats and Fuess 1986). Two of the water molecules
coordinate only to a Mg ion, with the oxygen atom in an approximately trigonal
arrangement, while the oxygen atom of the third water molecule accepts two
interactions, O - -Mg and O---H—O. The static model deformation densities
show the third water molecule to have two pronounced and separated maxima
in the oxygen lone-pair region, while the first two show one half-moon-shaped
broad maximum. Very comparable results have been obtained in a study of
magnesium sulfite hexahydrate (Bats et al. 1986).

Olovsson and coworkers have pointed out that the superposition of the
electron density of adjacent molecules in the experimental deformation density
may lead to modification of the contours in the lone-pair region of the water
molecules (Fernandes et al. 1990, McIntyre et al. 1990). To avoid this complication,
it is preferable to partition the crystal density through the multipole analysis, after
which comparisons can be based on individual molecule or fragment densities.

The topological analysis of the total density in hydrogen bonds of normal
length shows features typical of closed-shell interactions. Experimental results for
O- - -H from the study on L-dopa are listed in Table 12.4 in order of increasing
hydrogen bond strength (Howard et al. 1995). The density at the critical point p,
is very low, and V?p at the critical point is invariably positive, unlike that for
covalent bonds between first-row atoms. As discussed in chapter 6, these features
correspond to an absence of the potential-energy lowering typical for covalent
bonds, which results from shared interaction of the electrons with the two proximal
nuclei. Indeed, the values of the topological parameters differ very little from those
for an assembly of noninteracting molecules, listed in the second row for each
entry in Table 12.4. The charge density evidence points to a largely electrostatic
interaction for the hydrogen bonds listed.

Two recent studies show that this conclusion does not apply to very short
hydrogen bonds. In methylammonium hydrogen succinate monohydrate, three
“normal” hydrogen bonds, with O—H between 1.72 and 1.86 A exist, while a very
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TABLE 12.4 Hydrogen-Bond Critical Point Parameters in L-Dopa. Top Row:
Experimental Values. Bottom row: Values from Multipole Refinement of Theoretical
Structure Factors on a Crystal of Noninteracting Molecules

O -H Length o Vip

Bond (A) Hessian Eigenvalues (€A™% (€A™%  Ellipticity

O---H(N) 1.96 —0.715 —0.641 4.007 0.145 2.65 0.11
—-0.616 -0.521 3932 0.126 2.80 0.18

O -H(N) 1.94 —-0919 —0.886 4.716 0.192 291 0.04
—0.865 —0.667 4.162 0.161 2.63 0.30

O---H(O) 1.88 —1.450 —1.046 5.996 0.200 3.50 0.39
—1.063 —1.009 5.113 0.190 3.03 0.05

O---H(N) 1.83 —-1.259 -1.255 6.149 0.243 3.64 0.00
—1.436 —1.312 6.068 0.239 332 0.10

O -H(O) 1.76 —1.338 —1.282 6.518 0.221 3.90 0.04
—-1.519 -1.147 6.946 0.200 4.28 0.32

Source: Howard et al. (1995).

short symmetric hydrogen bond has an O—H length of only 1.221 A. Combined
X-ray and neutron diffraction studies, followed by topological analysis, give a VZp
value at the O—H critical point of —6.8(10) eA 3, and a considerable contraction
in the plane perpendicular to the bond path (Hessian eigenvalues —12.0(5),
—11.8(5) and +17.0(2) eA ~%) (Flensburg et al. 1995). A second study of the short
hydrogen bonds in methylammonium hydrogen maleate confirms these results
with Laplacian values at the bond critical points of the two independent, symmetric
short O—H bonds of —5.9(9) and —7.1(9) eA ~% (Madsen et al., to be published).

12.3.3.2 Molecular Electrostatic Moments in
the Solid State

We noted in chapter 7 that there is both experimental and theoretical evidence
that the electrostatic moments of molecules in crystals are enhanced by the inter-
actions between molecules. Considerable progress in quantum-mechanical (Cramer
and Truhlar 1992a) and combined quantum-mechanical/molecular mechanics
methods has made it possible to calculate the effect of solvent on dipole moments
of molecules in solution (Gao 1996). Such calculations indicate that the dipole
moment of the water molecule in the liquid is enhanced from 1.86 D to 2.15 D,
an increase of 0.29 D (Gao and Xia 1992). Not surprisingly, the effects are larger
for more extended molecules containing aromatic rings. For 4-nitroaniline, the
theoretical values are 7.64 D (isolated molecule) and 10.8 D (aqueous solution),
respectively, an increase of 50%. For nucleotide bases, the increase in dipole
moment in aqueous solution over the gas-phase values is found to be as large as
39-75% with, for example, adenine showing an increase from 2.17 to 3.81 D
(Cramer and Truhlar 1992b, 1993; Gao 1994).

The induced polarization is important in the calculation of molecular
properties, such as the hyperpolarizability discussed earlier in this chapter, and
for the prediction of molecular packing and macromolecular folding. The diffraction
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method has the unique capability of yielding experimental values of the molecular
electrostatic moments in a variety of environments. That the effects in solids can
be of the magnitude indicated by the theoretical results on solutions is confirmed
by the charge density analysis of 2-methyl-4-nitroaniline (Howard et al. 1992), a
prototype nonlinear optical solid in which molecular chains, formed by “head-to-
tail” hydrogen bonding between the NO, and NH, substituents, all point in one
direction parallel to the glide plane of the space group Cc. The molecular dipole
moment is found to be enhanced by the intermolecular interactions from an
isolated molecule theoretical value of 8.2-8.8 D to about 22-24 D. Though the
experimental standard deviation is large (~ 8 D), a significant increase of u appears
beyond doubt, comparable to the increase calculated theoretically for water-
solvated 4-nitroaniline. A calculation of the crystal-field effect, using the field
induced by the surrounding 8.8 D molecular dipoles across the central molecule,
predicts an increase from 8.8 D to 14.5D. Since this calculation is not self-
consistent, that is, no second calculation was performed with the higher dipole
moment, it must underestimate the polarization. It is in qualitative agreement with
the experimentally observed dipole-moment enhancement.

12.4 Concluding Remarks

A very large, and rapidly increasing, body of charge density information on
molecular crystals is now available. For the many high-quality studies of molecular
crystals not discussed above, the reader is referred to the original papers and to
literature reviews on the subject.



Appendix A

Tensor Notation

A.1 Variant and Covariant Quantities

In the tensor notation (Patterson 1959, Sands 1982) the basis vectors of the direct
lattice are written as g, (i = 1, 2, 3), and the coordinates of a direct space vector as
x‘. Thus, for a vector v, we can write

v=" xa =xa, (A1)

where, following the Einstein summation convention, summation over repeated
indices is implicitly assumed.

The terms variant and covariant refer to the transformation properties of the
quantities. A transformation may be defined by the transformation matrix T
operating on the direct space basis g, such that

a’=Ta or a;=Ta (A2)

As the vector v must be invariant under the transformation, the coordinates x’
must transform as

x =xT™! or x/'=F&x)  (with TiFY = 6)) (A.3)

as can be verified by multiplication of Egs. (A.1) and (A.2). Quantities that
transform as a; are called covariant; those that transform as x' are called
contravariant.

Since a;-a¥ = §;;, or in tensor notation, a;-a’ = §}, the reciprocal axes are
contravariant and are written as a‘. As the Milier indices are the coordinates in
the reciprocal base system, they must be covariant and are written as h;. Thus,
the Miller indices transform like the direct axes, both being covariant.
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A.2 The Relation Between the Contravariant and Covariant
Bases a’' and a;
We may write
a' = AYq; (A4)
By taking the scalar product of both sides of this equation with a*, we obtain
a'-a* = AYq; a* = 4* (A.5)

since a;-a* = &%.
The matrix A% with elements a’-a* is called the reciprocal metric g*.
Combining Eqgs. (A.4) and (A.5) gives

a' = g'a, (A.6)
The scalar product of both sides of Eq. (A.6) with a, gives
aa,=gYa;;a, or O =gYg, (A

that is, the real-space metric and the reciprocal-space metric are each other’s
inverse; in matrix notation:

gt=g"! (A.8)

A.3 The Length of a Vector and the Angle Between Two Vectors

In analogy to a' = g“a;, we can write
x'=gYx; and  x;=g;x’ (A9)
The square of the length ! of a vector v = x'a; is given by
I? = xig,x! = x;g"x;
and the angle between two vectors v = x‘a; and w = y'q,
xigijyj

(xigi,x)) 2(y'g,; y)1 2 (A.10)

cos (v, w) =




Appendix B

Symmetry and Symmetry Restrictions

B.1 Symmetry Operations

The 230 three-dimensional space groups are combinations of rotational and
translational symmetry elements. A symmetry operation S transforms a vector r
intor

Sr)=r (B.1)

such that p(r') = p(r), where p is the electron density.

A symmetry operation can have both rotational and translational compo-
nents, and is described in the Seitz notation as {R|s}. The terms R and s are the
rotational and translational parts of the 3d symmetry element, respectively, such
that

r=Rr+s (B.2)

An example is {5, |0 1/2 1/2} for an n-glide 1 a.

Several types of symmetry operations can be distinguished in a crystalline
substance. Purely translational operations, such as the translations defining the
crystal lattice, are represented by {I|n,, ny, n;}, with ny, n,, n; being integers.
Proper rotational operations are represented by the n-fold rotation axes {n|000}
(n =2, 3,4, 6). Rotation—inversion axes such as the 2 axis are improper rotation
operations, while screw axes and glide planes are combined rotation—translation
operations.

In a rectangular coordinate system, the rotation matrix n given by

cos2n/n  —sin2x/n 0
n=| sin2n/n cos2n/n O (B.3)
0 0 1

290



B. Symmetry and Symmetry Restrictions 291

and the rotation-inversion matrix by

—cos 2n/n sin 2n/n 0
i=| —sin2n/n —cos2n/n 0 (B.4)
0 0 -1

A product of two symmetry elements of a group must also be an element of
that group, or

{R[s}{T|u}r = {R(Tr + u) + s}r = {RT|Ru + s}r (B.5)

Thus, {RT|Ru + s} must be an element of the group. Similarly, the inverse
of a symmetry element must also be an element of the group. If {T | u} is the inverse
of {R|s}, then {RT|Ru+s} = {I|0}, or T =R~'. Therefore, Ru+s=0, or
u = —R ™ !s. As the translational component of a screw axis or glide plane is always
parallel to that symmetry element, it is not affected by the symmetry operation.
Thus, in that case, R !s =s, and u = —s.

A special position in the crystal is repeated in itself by at least one symmetry
element, that is, r = r’. According to Eq. (B.2), this means that [s| must be zero if
a symmetry element is to give rise to a special position. It follows that translations,
screw operations, and glide planes do not generate special positions. On the other
hand, positions located on proper rotation axes or centers of symmetry have lower
multiplicity than general positions in the unit cell.

B.2 Symmetry in Reciprocal Space

If the contravariant components of a vector transform as r' = Rr, the covariant
components (such as h, k, I) transform as r*' = (R~ !)Tr*, or, in tensor notation,
x/ = Rix" and x; = Rix, (appendix A). Thus, a reflection H, where H = h;a’, is
repeated by the symmetry element, S, at

H =RH (B.6)

where R’ = (R™!)T. If we use a Cartesian coordinate system, R will be a unitary
matrix and R’ = R.

As noted above, if {R|0} is an element of the space group of the crystal,
{R™!|0} must also be a symmetry element. We may therefore write

F(H) =Y f, exp 2niH-r,)
=Y f,exp(QniH-r,) + Y f,exp 2niH-R™'r))

1/2 1/2

=) f.exp(2niH-r,) + Y f, exp 2niRH-r,) (B.7)

1/2 1/2

because if H is rotated in the opposite direction and R kept stationary, the dot
product will remain unaffected.
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For the reflection at RH, we may write, similarly,

F(RH) = Y f exp2ni(RH-r,) + > f, exp 2ni(RH-Rr,)

1/2 1/2

=Y f,exp2ni(RH-r,) + Y f, exp2mi(H-r,) (B.8)
1/2 1/2
Since Eqs. (B.7) and (B.8) are equal, this implies that a rotational symmetry
element of direct space is also a rotational symmetry element of reciprocal space.
This result must be correct; since X-ray scattering is a physical property of the
crystal, it must at least have the point-group symmetry of the crystal.
The effect of the translational component of the element {R|s} can be
considered in an analogous manner

FH) =Y f,exp{2niH-r,} + ) f, exp {2niH-(R"'r, —5)} (B.9)
1/2 1/2

F(RH) =) f,exp {2ziRH'r, + Y. f, exp {2niRH-(Rr, + s)}

1/2 1/2
=Y foexp 2niH-R7'r,} + ¥ f, exp {2riH-(r, + R 's)}

1/2 1/2
=Y fiexp 2niH-R7'r,} + Y f, exp {2niH-(r, + s)} (B.10)
1/2 1/2

Comparison of Egs. (B.9) and (B.10) shows that the structure factor amplitudes
of reflections at H' = RH and H are related by the expression

F(H') = exp (2niH-s) F(H) (B.11)

Equation (B.11) implies that [(H') = I(H), that is, the rotational symmetry of
the space group, is repeated in the diffraction pattern. In addition, if the
atomic scattering factors f are real, which is the case when resonance effects are
negligible, a center of symmetry is added to the diffraction pattern, that is,
I(H) = F(H) F*(H) = I(—H) even in the absence of an inversion center, which is
Friedel’s law.

B.3 Systematic Absences

The symmetry elements will leave certain classes of reflections invariant,
or F(H') = F(H). Examination of Eq. (B.11) shows that unless F(H) =0,
exp (—2niH+s) must be equal to 1, or

hs; + ks, + Is; = 0(mod 1) (B.12a)
In tensor notation, this is expressed as
h;s' = 0 (mod 1) (B.12b)

A reflection will be systematically absent if this condition is not fulfilled. As
an example, we take the element (o, |0 1/2 1/2). The 0kl reflections are invariant.
Therefore, only Okl reflections with k + | = 2n will have nonzero intensity.
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B.4 Symmetry Restrictions of Tensor Elements

Second-rank tensors transform according to the expression
¢ = RoRT (B.13a)
or, in tensor notation,
6 = RLa"R] (B.13b)

Symmetry restrictions exist for tensors describing macroscopic physical
properties of all but triclinic crystals, and for tensors describing the local properties
of atoms at sites with point-group symmetries higher than 1.

As an example, we consider an atom on a site of four-fold symmetry. The
matrix R in this case is given by

0 —~1 0
RC)={1 0 0 (B.14)
0 0 1

Applying the transformation (B.13) to the symmetric tensor f;; leads to the
equation

B /312 Bis B2z —ﬂu —Bas
BIZ /322 )323 = —ﬂu ﬁu ﬁl3 (B.13)
313 ﬁzs 533 'ﬁz3 ﬁ13 B33

which implies that f,; = B,,, and B, = B3 = B3 =0; in other words, the
representation quadric of the tensor is an ellipsoid of revolution, oriented along
the four-fold axis.

Symmetry restrictions for a number of crystal systems are summarized in
Table B.1. The local symmetry restrictions for a site on a symmetry axis are the
same as those for the crystal system defined by such an axis, and may thus be
higher than those of the site. This is a result of the implicit mmm symmetry of a
symmetric second-rank tensor property. For instance, for a site located on a mirror
plane, the symmetry restrictions are those of the monoclinic crystal system.

The third-rank tensors, as occur in the expression for the anharmonic
temperature factor (chapter 2), the restrictions may be derived by use of the
transformation law:

g% = Ri,RiR% o™ (B.16)

Symmetry restrictions for third- and fourth-order anharmonic temperature
parameters are lised in the International Tables for X-ray Crystallography Vol. IV
(1974). A more complete list for elements up to rank eight has been derived by
Kuhs (1984).

Symmetry restrictions for spherical harmonic functions are given in appendix D.
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TABLE B.1 Symmetry Restrictions for the Components of a Symmetric Second-Rank
Tensor Referred to the Crystal Axes

Crystal System o'l o!? o' a?? a3
Triclinic (1) ot agl? o3 g?? %3
(2
Monoclinic | — o'l 0 a3 o2 0
m
Orthorhombic (mmm) a!! 0 0 ?? 0
4
Tetragonal <A mm) o'! 0 0 o't 0
m
Hexagonal, trigonal a'! 1!t 0 o'! 0
6 3
= mm, — mm
m m
/4
Cubic| — 3m gl? 0 0 a!! 0
m

Source: Sands (1982).



Appendix C
The 509, Probability Ellipsoid

The three-dimensional Gaussian distribution function is, in tensor notation,
given by

—1|1/2

0 exp {—3u'c " 'u} (2.21b)

P(u) =

with ¢ = (ufu’d.

For an ellipsoidal surface defined by u”e ~'u = ¢?, the probability of the atom
being inside the surface is a function of c.

Using the principal axes system, we may write

2
- uy u; Ui
uTO' ! == '*3+'—£—C2 (Cl)
0y 03 03

Without loss of generality, we may change the metric of space such that
02 = 63 = 03, which reduces the equations to those of the equivalent isotropic
distribution with ¢ = ¢ = 0% = ¢2, or, with Eq. (C.1):

— = (C2)

Thus, on the surface of the sphere defined by Eq. (C.1), r = u,/3 = co. The
probability P. that the atom is within the sphere is given by the integral over the
isotropic Gaussian distribution:

ce T 2n '0. 1]1/2 rz
=£=OL Ofw 0 (27[)3/2 {_?} dt (C3)
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or, with dt = r? sin 0 dr d0 de, after integration over 0 and ¢

47.[ ca "2
P = “(2n02)3/2 L r? exp( — Z,E) dr (C.4)

and with the substitution v =r/o —

4 c r2 2 1/2 c 2
P = o r? expl — 4 ar ={ -~ r exp — T dr (C5)
(2n)3? J, 2 T o 2

which is the expression reported by Johnson and Levy (1974).
The integral can be related to the error function by partial integration, which

gives

K K
f xexp(—x)dx=J exp(—x)dx — Kexp(—K) (C.0)

0 ]
Use of tabulated values of the error function shows that for ¢ = 1.5382,
P. = 0.5. Alternatively, a tabulation of the integral in Eq. (C.5) (Owen 1962) may
be used directly.
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Spherical Harmonic Functions

D.1 Real Spherical Harmonic Functions and Associated Normalization

Constants (x, y, and z are Direction Cosines)

Normalization for
Wave Functions, M,,, °

Normalization for
Density Functions, L,,,¢

Angular function, Numerical Numerical
! Symbol Cr® Cimp® Expression Value Expression Value
0 00 1 1 (1/4m)"2 0.28209 1/4n 0.07958
1 11+ x
11— 1 y (3/4n)!'? 0.48860 1/n 0.31831
10 z
2 2 1/2 322 -1 (5/16m)'2 0.31539 38£ 0.20675
n
21+ 3 Xz
21— yz 12
- 6 <t~y (15/4m) 1.09255 3/4 0.75
22— xy
10
3 30 1/2 52 -3z (7/16m)'12 0.37318 T 0.24485
n
N+ 372 x{5z2 — 1] - . 14 m\7!
30— yI5z2 ~ 1] (21/32m) 0.45705 arl + — — n 0.32033
324+ 15 (x? —yZ)Z} 2
- 2xyz (105/161) 1.44531 1 1
3+ 15 X3 = 3xy? 2
13- N 3x2y} (35/32m) 0.59004 4/3n 0.42441
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(continued)
Normalization for Normalization for
Wave Functions, M,,,© Density Functions, L,,*
Angular function, Numerical Numerical
{ Symbol Ci Cimp” Expression Value Expression Value
4 40 1/8 3524 - 3022 + 3 (9/256m)1/2 0.10579 < 0.06942
41+ 5/2 x[72° — 3z] 12 735
4 72 — 321 (45/32m) 0.66905 $.77 + 196 0.47400
424 1572 (x2 - y)[722 — 1] " 105./7
42— 2722 - 1] (45/64n) 0.47309 (136 + 2877) 0.33059
43+ 105 (x* = 3xy%)z 12
43— (=y° + 3xiy)z (315/32m) 1.77013 5/4 1.25
44 + 105 x* —6xiy? + y* 12
44— 4xdy — dxy? (315/256mn) 0.62584 15/32 0.46875
5 50 1/8 63z% — 7022 — 152 (11/256m)"/? 0.11695 0.07674
51+ 15/8 (21z* — 14z2* + 1)x (165/256m)"/2 0.45295 0.32298
51— (21z% — 1422 + 1)y
52+ 105/2 (322 — 2)(x* ~ y?) (1155/64n)!/2 2.39677 1.68750
52— 2xy(3z> — 2)
53+ 105/2 (922 — I)(x* — Ixy?) (385/512m)1/2 048924 0.34515
53— (922 — 1)(3x%y — y?)
54+ 945 2(x* — 6x%y% + y*) (3465/256m)! /2 2.07566 1.50000
54— z(dx3y — 4xy?)
55+ 945 x5 — 10x3y? + Sxy* (693/512m)12 0.65638 0.50930
55— Sxty — 10x2y3 + 8
6 60 1/16 231z° - 315z% 4 10522 - § (13/10247)!/2 0.06357 0.04171
61+ 21/8 (3325 — 3023 + 5z)x (273/256m)/? 0.58262 041721
61— (332% — 3023 + 52)y
62+ 105/8 (33z2% ~ 1822 + D(x? — y}) (1365/2048m)*? 0.46060 0.32611
62— 2xy(33z* — 1822 + 1)
63+ 315/2 (1123 — 3z)(x* — 3xy?) (1365/512m)'/? 0.92121 0.65132
63— (112% — 3z)(3x2y — y?)
64+ 945/2 (1122 — 1)(x* — 6x2y? + y%) (819/1024m)" /2 0.50457 0.36104
64— (1122 — 1)dx’y — 4xy*)
65+ 10395 2(x3 — 10x3y? + 5xy*) (9009/512m)1/? 2.36662 1.75000
65— 2(5x*y — 10x%y® + y%)
66+ 10395 X8 — 15x*y? + 15x2y* — y° (3003/20487)"/2 0.68318 0.54687
66 — 6x%y — 2063y + 6xy°
7 70 1/16 42927 — 693z° + 31523 — 35z (15/1024m)*/2 0.06828 0.04480
7+ 7/16 (42925 — 4952 + 13522 - 5)x (105/4096m)*/2 0.09033 0.06488
71— (4292° — 49524 + 13522 — 5)y
72+ 63/8  (143z% — 110z2% + 152)(x* — y*)  (315/2048m)"/? 0.22127 0.15732
72— 2xy(1432% — 1102° + 152)
73+ 315/8  (143z* — 662% + 3)(x> — 3xy?) (315/4096m)*/2 0.15646 0.11092
73— (143z* — 662% + 3)(3x%y — y?)
74 + 3465/2 (1323 — 3z)(x* — 6x%y? + y*) (3465/1024m)1 /2 1.03783 0.74044
74— (1323 — 32)(4x%y — 4xy*)

(continued)
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(continued)

Normalization for Normalization for
Wave Functions, M,,, © Density Functions, L,,"
Angular function, Numerical Numerical
! Symbol Ci” Cimp” Expression Value Expression Vatue
7 75+ 10395/2 (1323 — 1)(x® — 10x3y? + 5xy*)  (3465/4096n)'/ 0.51892 0.37723
75— (1323 — 1)(5x*y ~ 10x%)® + %)
76+ 135135 z(x® — 15x%y? + 15x2y* — y5)  (45045/20487)'/2 2.6460 2.00000
76— 2(6x%y + 20x3y® — 6xy°)
77+ 135135 x7 —21x%y? + 35x3y* — Txy®  (6435/40967)'/2 0.70716 0.58205
77— TxSy — 35x%y® + 21x%y% — y7

* Common factor such that C,,,c;,, = PT{(cos )51 e,

b x = sin @ cos @, y = sin @ sin ¢, z = cos 6.

¢ As defined by y,,,, = M,,,c,,, where c,,, are Cartesian functions.

¢ Paturle and Coppens (1988), as defined by d,,,, = L,,,,C;,,, Where ¢, are Cartesian functions.

N, = {1445 — 14445 — 204 + 64 _ —6A4,)2n}"* where: A+ = [(30 + /480)/70]'/2.

ang —

ar = arctan (2).

D.2 Kubic Harmonic Functions

(a) Wave function-normalized Kubic harmonics as linear combinations of wave
function-normalized spherical harmonic functions. Coefficients in the expression

K= Z k:npjylmp'
mp
Wave function-type normalization defined as

T 2n
f J K| sin 6 d6 do = 1.4

[}] 0
mp
Even |
I j 0+ 2+ 4+ 6+ 8+ 10+
01 1
4 1 @2 @
0.76376 0.64550
6 1 5167 e —id'?
0.35355 —0.93541
6 2 apyvz —3512
0.82916 —0.55902
8 1 (32 HERE 312
0.71807 0.38188 0.58184

(continued)
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(continued)

mp
Even |
[ 0+ 2+ 4+ 6+ 8+ 10+
10 1 36 I —40gh
0.41143 —0.58630 —0.69784
10 2 e (D 1585172
0.80202 0.15729 0.57622
I j 2— 4— 6— 8-
31 1
71 e 2
0.73598 0.41458
9 1 1312 —3(13)12
0.43301 ~-0.90139
9 2 2 -G
0.84163 —0.54006

(b) Density-normalized Kubic harmonics as linear combinations of unnormalized
spherical harmonic functions. Coefficients in the expression

where

_— 4
Klj - Z kmpjulmp

mp

Uit = P cos (O)5ing-

Density type normalization is defined as

n ("2n

0 Jo

mp
Even !
I j N; 0+ 2+ 4+ 6+ 8+ 10+
0 1 1/4n = 0.07958 1
4 1 0.43454 1 +1/168
6 1 0.25220 1 —1/360
6 2 0.02083 1 —1/792

(continued)
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mp
Even |
I j N; 0+ 2+ 4+ 6+ 8+ 10+
1 1
8 0 0.56292 1 1/5940 [
672 5940
1 1
10 1 0.36490 1 1/5460 R,
4320 5460
1 1
10 2 0.00952 1 1/43680 ——
456 43680
I j 2— 4— 6— 8—
31 0.06667 1
7 1 0.01461 1 1/1560
9 1 0.00596 1 1/2520
9 2 0.00015 1 —1/4080

(c) Density-normalized Kubic harmonics as linear combinations of density-
normalized spherical harmonic functions. Coefficients in the expression

Ky=Y kb idy.

mpJ
mp

Density-type normalization is defined as

n {*2n
J‘ j IKI_]l Sln@d@d(p =2—6,0.
0 JO

mp
Even |
1 j 0+ 2+ 4+ 6+ 8+ 10+
01 1
4 1 0.78245 0.57939
6 1 0.37790 —0.91682
6 2 0.83848 —0.50000

(continued)
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(continued)
mp
Even |
[ j 2— 4 6— 8—
31 1
7 1 0.73145 0.63290

2 Source: Paturle and Coppens (1988).
® Source: Su and Coppens (1994b).
D.3 Symmetry-Restrictions for Spherical Harmonic Functions

(a) Index-picking rules of site-symmetric spherical harmonics with | <6 (I, m,
and j are integers).?

Choice of Coordinate

Symmetry Axes Indices of Allowed dy,,

1 Any All (I, m, +)

i Any (24, m, +)

2 2}z (,2u, 1)

m mliz 1-2j %)

2/m 2fz,mlz (24,2u, £)

222 20z 2]y @2, 2, +), 24+ 1,2, —)

mm2 2llz,m Ly 2 +)

mmm mlzmlyml!lx (24, 2u, +)

4 4z (4, +)

4 4z (24,4p, £), QA+ L, 4p+ 2, 1)

4/m 4|z,mlz (24, 4y, t)

422 4lz,2]y (24,4, +), 24 + 1,4, —)

4mm 4fz,mLly 4 4u, +)

42m 4)z,2)x Q4 4p, +), 24 + 1,4u + 2, —)
mly A4, +), QA+ L,4u+ 2, +)

4/mmm 4izzmLlzmlix (24, 4u, +)

3 3z (4,34 +)

3 3z (24, 3, +)

32 3z20y (24, 3, +), QA + 1,35, —)
2] x Gu+ 2,3, +),

Gu+2+1,3u )

3m 3fz,mly (¢, 3u, +)

) omlix (6p, +). (0, 6p+ 3, —)

3m 3jz,mLy (24, 3u, +)
m L x (24, 61, +), (24, 6u + 3, —)

(continued)
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Choice of Coordinate

Symmetry Axes Indices of Allowed d,,,,

6 61z (L 6p, £)

6 6|z (22,64, £), (24 + 1,6p + 3, )

6/m 6lz,mlz (24, 6p, 1)

622 6liz 2]y (24, 6, +), (24 + 1, 64, ~)

6mm 6lz,mly (I, 6u, +)

6m2 6llz,mLy Q4 6p, +), 21+ 1,6p+3, +)
mlx (24,64, +),2A + 1,64+ 3, —)

6/mmm 6lzzmlzmly (24,64, +)

(b) Symmetry-allowed Kubic harmonic functions.

point group
23 m3 432 A3m  mim
[ T T, o T, 0,
0 1 X X X x x
31 X X
4 1 X X X X x
6 1 X x X X x
6 2 X X
7 1 X X
8 1 x x x X x
9 1 X x
9 2 X X
10 1t X X X x x
10 2 X x

® Source: Kara and Kurki-Suonio (1981).

D.4 Transformation of Real Spherical Harmonic Density
Functions on Rotation of the Coordinate System

The following treatment follows derivations given by Su (1993) and Su and Coppens

(1994a).

D.4.1 Rotation of the Coordinate System

Let (r, 6, ¢) and (r, &, ¢') be the spherical coordinates of a vector,

X = (x5, X3, X3)l €,

€

€3

’

€

= (x’h xl2’ X’3) el2

’

€3
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The unitary matrix which transforms the two right-handed Cartesian bases e and
e’ can be written in terms of Eulerian angles «, §, and y, (Arfken 1970, Steinborn
and Ruedenberg 1973, Edmonds 1974) such that

e cosacos fcosy—sinasiny  cosasiny+sinacosfcosy —sinfcosy
e, |=] —cosxcos fsiny—sinacosy cosacosy—sinacosfsiny  sinfsiny
€ cosasin ff sinasin cosf
€
x| e,
€3
€
=Rl e, (D.1)
€3

That is, the transformation is represented as successive rotations of y, §, « about
the e;, e,, and e, axes. A positive rotation is a counterclockwise rotation.! Since R
is unitary, it follows that the Cartesian coordinates transform as

’

Xy Xy
x5 | =R} x, (D.2)
x4 X3

The Eulerian angles have a domain of definition 0 < « <27, 0 < f < &, and
0 <y < 2z From Egs. (D.1) and (D.2), a, B, and y can be expressed in terms of
the elements of R:

fi = arccos (Rj3) (D.3)
B {arccos (R, /sin B) if Ry,/sin >0 (D)
27 — arccos (Ry,/sin ff) if Ry,/sin B <0 '
o {arccos (—R,;/sin f) if R,3/sin § >0 D.5)
/ 2n — arccos (R, ;/sin ) if Ry;/sin f <0 '
Equations (D.4) and (D.5) are valid if R35 # +1.
0
If R;; = +1, then ff = { . We set y =0, and find « from
T
. {arccos (R,,/R33) flez/R33 >0 (D6)
2m — arccos (R, ;/R;3) ifR,;/R;; <0

! Note: x, 8, and 7 are related to the diffractometer angles w, y, and ¢, except that, in the conventional
definition, the rotation f§ is around the y axis, rather than the x axis.
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Equations (D.3)~(D.6) ensure that the angles are within the domain of definition
and unambiguously defined.

D.4.2 Rotation of the Complex Spherical Harmonic
Functions

The complex spherical harmonic functions, defined by Eq. (3.22), transform under
rotation according to (Rose 1957, Arfken 1970)

1
YO, 9= ), Y0, )DRn(x B ) (D7)
m=-1
where the D" terms are (2! + 1) x (21 + 1) matrices, which form the (2! + 1)-
dimensional irreducible representation of the rotation group. We may write
D, By y) = e~ ™30 (Bye” ™ (D.8)

The elements 6 (B) are given by (Rose 1957, Steinborn and Ruedenberg
1973)

W a+wmhmmy” om C+ﬂ<l—m>
st = (=) U TEED -

2l-m'+m~- 2k 2k—-m+m’
X l:cos g] [sin g] (D.9)

with the range of integer k defined by max (O,m —m') <k <min ({ — m', 1 + m),

and
(a) 3 al
b)  (a-b)b’

An alternative way of evaluating the functions 6%,(f) is described by Su and
Coppens (1994a).

D.4.3 Rotation of the Real Spherical Harmonic
Density Functions

As the real spherical harmonic density functions d,,,,(6, ¢) are directly related to
the Y7(6, ¢) terms, their rotation follows from Eq. (D.7) (Arfken 1970). The results
are, for d,,, . (6, ¢),

!
Ao (00 &) = M;‘"‘( 1)"54,(8) cos (m)y/2 210 Mio .40, 8) + 1" L 5-

im lmm“l

g {[(— D™ 300 m(B) cos (my + m'a) + (= 1)"02,.(B)

M,
x cos (my — m’oz):l Z'—"’ dyp +

im’
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+ [(= )" ™ () sin (my + m'a) — (= 1)"6Y,,..(B)

) M,
x sin (my — m')) z’l di— (6, D)} (D.10a)
im’
and for d,,(6', ¢')
L, : M, L,
Q- (0, ¢') = " (= D" 160,(B) sin (my)y/2 —2 dyo(6, ¢) +
Mlm LIO Imm =1

* {[< — 1yt g0 (B) sin (my + ma) + (— 1) 100 . ()

. M, .
x sin (my — m’oc)] ~L—'1 i +

Im’

+ [(= D)™™ 80),u(B) cos (my + m'a) — (= 1)"3%,,..(B)

x cos (my — m'a)] }Zﬂ dp. (8, d))} (D.10b)

Im’
and for m=20

. @ 1 Ly ¢
dio(0, ¢") = So0(B)dio(8, ) +

ﬁ M_[() m=1
Mlm’

X {[(— D™ 80(B) + 0L, o(B)] cos (') d . (6, D) T

Im’

T+ L= 1™ 89(B) + 6D, o(B)] sin (1) dyr—(6, ) %"L} (D.10¢)

im’

D.4.4 Transformation of Population Parameters

Let f, P and ', P’ be (2] + 1) x 1 matrices representing the density-function
normalized spherical harmonics and their population parameters, before and after
rotation, respectively. Then, by using Eq. (D.10), we construct a (21 + 1) x (2[ + 1)
matrix M such that

f=Mf (D.11)
The population parameters transform according to
PP=M"YH'P (D.12)

For the dipolar terms, M is unitary, and (M~ !)” = M, but this is not the case
for the higher moments. For the dipolar populations, the expressions are
particularly simple, (M = R):

Py, Py
P, =r| P, (D.13)
P Py

where R is defined in Eq. (D.1).
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Products of Spherical Harmonic
Functions

E.1 Expressions for the Integrals over Products of Three Real
Spherical Harmonic Functions

The integral over the product of three real spherical harmonic functions (Su 1993)
is defined as

my my; m; e e
Clh Lo =j J Yiumipi (05 D) Yiamp (05 ) Yiysp (0, @) sin 0 d6 dp
0o Jo

Pr P2 Ps3
(E.1)

This integral will be zero unless |, — ;| <!, <1, + 15,1, + 1, + I; =even, p, =
P2 Pz, My = [my — msl, or my = m, + my. When these conditions are fulfilled, the
integrals C’ can be written as

m m m4+m
Clm m I (E.2)
p p pr

The integrals C’ can be expressed in terms of the integrals of the product of three
complex spherical harmonic functions:

m m m4+m
C<

2m n
I 1,, ) = f J Y70, o) YO, o) YT (6, p)* sin 6 dO do
0 0
(E.3)
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The result is

'

m m m+m
S IR A R c<m meome "’) (E4a)
2 I r I
pppr
if at least one of m, m’, or m + m’ equal zero, and

m m m+w

citror g = iC(
[P0 l"
p P py
if none of m, m', or m + m’ equal zero. The minus sign in Eq. (E.4a) and (E.4b)
applies only when both p and p' are negative. In all other cases, the sign is +.
Note that, by definition, y,, = y,0+.
The integral of the product of three complex spherical harmonic functions
[Eq. (E.3)] is given by

’ ’ ) l 1 l/ ’ 1"
C(m m m+m>=(_1)(,_,, 2+ D+ 1)(1 ! l)(lml’m’ll”m+m')

l 1/ l/l 47‘[ 0 O O
(E.5)

where (ImlI'm’ | I"'m”) is the Clebsch—Gordan coeflicient the numerical value of which
can be calculated readily (Abramowitz and Stegun 1964, Edmonds 1974), and

(0 ifJ=1+1,+1;=o0dd

(— 1),/2/(1 — 20 = 2L)H(J - 20y)!
< (J + D!
y (J/2)
L TR DI~ L2 - L)l

P
o
S o
S ST
\/
il

(E.6)

For example, using Egs. (E.5) and (E.6),

1
(1011121) = —,
J?
(112)_ /3
000 15’

Cl 1 12 =i/E=O.218509686118416
10V =

and

which gives
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Expressions for the products of two spherical harmonic functions are given
in Tables E.1 and E.2. Multiplication of both sides of the expressions by a spherical
harmonic function appearing on the right-hand side, and subsequent integration,
leads to equations of the type of Eq. (E.1). Thus, coefficients in Tables E.1 and
E.2 are identical to the integrals C and C'.

Table E.3 lists the products of the real spherical harmonic functions in terms
of the density-normalized spherical harmonic functions d,,,.

TABLE E.1 Products of Two Normalized Complex Spherical Harmonic Functions

YooYoo = 0.28209479Y,,
Yo Yoo 0.28209479 Y, ,
Yio¥Yio = 0.25231325Y,,
Y, Y, = 0.28209479Y,,
Y Yo = 0218509697,

i

Y Y, = 030901936V,

Vi1 Yy, - = —0.12615663 Y, + 0.28209479 Yy,

Yiotoo = 0282094797,

Yiotio = 0.24776669Y;, + 0.25231325Y,,

Yie¥i, = 0.20230066Y;, — 0.12615663Y,,

Yot = 0241795547, + 0.18022375,, + 0.28209479 %,
Yo Yeo = 0.28209479Y,,

Y Yo = 0.23359668Y,, + 0.21850969Y;,

Y, Y, = 026116903Y,,

Y, Y, = —0.14304817Y;, + 0.21850969 Y, ,

Y)Y = 0220728127, + 0.09011188Y;,

Y Yy, = 0.25489487Y,, + 0.22072812Y,,

Y Yy o= —0.16119702,, + 0.09011188Y,, + 0.28209479 Y,
Yy Yo = 0.28209479Y,,

Y, Ye = 0.18467439Y,,

Y;,Y, = 0319865437,

Y, Y, = —0.08258890Y;, + 0.30901936Y,,

Y% = 0.15607835Y,, — 0.18022375Y;,

Yy, Yy, = 0238413617,

Yy, Yar_= —0.09011188Y,, + 0.220728121,,

V.Y, = 0.33716777Y,,

+ 028209479,

Yo Y,o=  0.04029926Y,, — 0.18022375Y,, + 0.28209479Y,,

TABLE E.2 Products of Two Real Spherical Harmonic Functions y,,,,, with

Normalization Defined in Appendix D

YooYoo = 0.28209479y,,
YioYoo = 0.28209479y,,
Vioio = 02523132550 + 0.28209479y,,

YiisYoo = 028209479y,
YiisYio = 0.21850969y,, ,

ViteYine= 021850969y,,, — 0.12615663),,
Yu+«yin-= 021850969_}122 -

Yio¥oo = 028209479y,

+ 0.28209479y,,

(continued)
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(continued)
Y20¥10 =
YooYz =
Y2020

Y21+Yo0
Y21+Y10
Ya1+¥Vi1x =
Y212V x
V21120

Ya12¥Y21: =
Yai+¥a- =
Y22+Yoo0
Y22¢V10 =
Yaz4V112 =
Ya2t¥Vug =
Y224¥20 =
Y224Y21+ =

I

i

Y224 Y15 =
Y22+Y22+ =
Ya24Y22- =

024776669y, + 0.25231325y,,

0.20230066y, , +

— 0.12615663y,, +

0.24179554y,,, + 0.18022375y,, + 0.28209479y,,

028209479y, , ,
0.23359668y, .
0.18467439y,, ,
—0.18467439y,,
0.22072812y,, .
0.18022375y,, .,
—0.18022375y,, -
0.28209479y,,,
0.18467439y,, .
40.22617901y,,,
0.22617901y,, -
0.15607835y,,+
+0.16858388),,.,
0.16858388 ..
+0.23841361y,,,
0.23841361y,, -

+ 0.21850969y, , ,
— 0.14304817y,, + 0.21850969y,

+0.09011188y,, .
+ 0.15607835y,, , — 0.16119702y,, + 0.09011188y,, + 0.28209479y,,
+ 0.15607835y,,

~ 0.05839917y;, , + 0.21850969y, , ,
+ 005839917y, - F 0.21850969y, , -

— 0.18022375y,, ,

— 006371872y, 4 + 0.15607835y,,

+ 0.06371872y,, - F 0.15607835y,, _

+ 0.04029926y,, — 0.18022375y,, + 0.28209479y,,

TABLE E.3 Products of Two Real Spherical Harmonic Functions y,,,, with
Normalization Defined in Appendix D

Yoo Yoo = 1.0000d,

VioYoo = 043301d,,

Yoo = 038490d20 + I.Odoo

Yii1xYoo = 043302(11 1+

Vitzyio = 031831d,,,

Yi1+Vi1+ = 0.31831d,,, — 0.19245d,, + 1.0d,,
Viga V11— = 031831d,,_

VaoYoo = 0.43033d,,

VoVio = 0.37762d,, + 0.38730d,,

YaoVi1+ = 0.28864d,,, — 0.19365d,, .,
YaoV2o = 0.36848d,, + 0.27493d,, + 1.0dy,
Y214 Yoo = 041094(1211

Ya1+Vio = 0.33329d,,, + 0.33541d,,,

Yare¥iis = 026691d5,, — 0.21802d50 + 0.33541d,,
Yare Vi = —0.26691d;,

Ya1+V2e = 0311585d,,, +0.13127d,,,

Vars Va1 = 0.25791d,,, + 0.22736d,,. — 0.24565d,, + 0.13747d,, + 1.0d¢,
Var+Va1- = 0.25790d,,_ + 0.22736d,, _

Yaze Voo = 0.41094d;,,

YazeVio = 026691d,,,

Vaas¥V11+ = 10.31445d,,, — 0.083323d,,, + 0.335414,, .,

Va2+ ¥y = 0.31445d5,_ + 0.083323d,,_ F 0.33541d,, -

V22: Y20 = 022335d,,, — 0.26254d,, .,

Va2+ Y21+ = 1£0.23873d,,, — 0.0899384,,, + 0.227364,, .

V224 Y1y = 0.23873d,5. £ 0.0899384,, . F 0.22736d,, -
VazsVaze = +0.31831d,, . + 0.061413d,, — 0.27493d,0 + 1.0doo
Vaz+ V22— = 0.31831d,,
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Energy-Optimized Single-{ Slater
Values for Subshells of Isolated Atoms

TABLE F.1 Best Values of  (au™!) for the Ground States of Neutral Atoms!

Element Is 2s 2p 3s 3p 4s 3d 4p
He 1.6875

Li 2.6906 0.6396

Be 3.6848 0.9560

B 46795 1.2881 1.2107

C 5.6727 1.6083 1.5679

N 6.6651 1.9237 1.9170

O 7.6579 2.2458 2.2266

F 8.6501 2.5638 2.5500

Ne 9.6421 2.8792 2.8792

Na 10.6259 3.2857 3.4009 0.8358

Mg 11.6089 3.6960 3.9129 1.1025

Al 12.5910 4.1068 44817 1.3724 1.3552

Si 13.5745 4.5100 49725 1.6344 1.4284

P 14.5578 49125 5.4806 1.8806 1.6288

S 15.5409 5.3144 5.9885 2.1223 1.8273

Cl 16.5239 5.7152 6.4966 2.3561 2.0387

Ar 17.5075 6.1152 7.0041 2.5856 22547

K 18.4895 6.5031 7.5136 2.8933 2.5752 0.8738

Ca 19.4730 6.8882 8.0207 3.2005 2.8861 1.0995

Sc 20.4566 7.2868 8.5273 3.4466 3.1354 1.1581 2.3733
Ti 21.4409 7.6883 9.0324 3.6777 3.3679 1.2042 2.7138
\% 22.4256 8.0907 9.5364 3.9031 3.5950 1.2453 2.9943
Cr 234138 8.4919 10.0376 4.1226 3.8220 1.2833 3.2522
Mn 24.3957 8.8969 10.5420 4.3393 4.0364 1.3208 3.5094

(continued)

' As defined by R(r) = [{""3/(n + 2)!] ¥" exp (—{r), where n is the principal quantum number.
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(continued)

Element is 2s 2p 3s 3p 4s 3d 4p
Fe 25.3810 9.2995 11.0444 4.5587 4.2593 1.3585 3.7266

Co 26.3668 9.7025 11.5462 4.7741 44782 1.3941 3.9518

Ni 27.3526 10.1063 12.0476 4.9870 4.6950 1.4277 4.1765

Cu 28.3386 10.5099 12.5485 5.1981 4.9102 1.4606 4.4002

Zn 29.3245 10.9140 13.0490 5.4064 5.123%1 1.4913 4.6261

Ga 30.3094 11.2995 13.5454 5.6654 5.4012 1.7667 5.0311 1.5554
Ge 31.2937 11.6824 14.0411 5.9299 5.6712 20109 5.4171 1.6951
As 32.2783 12.0635 14.5368 6.1985 5.9499 2.2360 5.7928 1.8623
Se 33.2622 12.4442 15.0326 6.4678 6.2350 24394 6.1590 20718
Br 342471 12.8217 15.5282 6.7395 6.5236 2.6382 6.5197 2.2570
Kr 35.2316 13.1990 16.0235 7.0109 6.8114 2.8289 6.8753 2.4423

Source: Clementi and Raimondi (1963). For double zeta functions, see Clementi (1965).



Appendix G

Fourier—Bessel Transforms

TABLE G.1 Closed-Form Expressions for Fourier Transform of Slater-Type Functions

Gy.(K,Z) = j | rVexp (= Zr)ji(Kr)dr, with K = 4nsin 8/

0

k 1 2 3 4 5
0 1 2z 232 — K 24Z(Z* — K?) 24(5Z% — 10K2Z2% + K*)
K*+2Z*  (K*+2)*  (K*+Z% (K* + 2% (K? + 2%)°
1 2K 8KZ 8K(5Z% — K?) 48K Z(5Z* — 3K?)
(K? + 22 (K?* + 2%} (K24 Z2%* (K2 4+ Z%8
5 8K? 48K?*Z 48K3*(72% — K22
(K? + 233 (K2 + Z%* (K? + Z%
3 48K? 384K37
(K* + Z%* (K* + Z%)°
4 384K*
(K? + 2%)°
5
6

313
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(continued)

N
k 6 7 8
240Z(K2—3Z)(3K?—Z%) 720(7Z6 —35K?Z* +21K*Z? —K%) 40320(Z7 —~TK2*Z3+7TK*Z>—K5Z)
(KZ+ZZ)6 (KZ+ZZ)7 (K2+22)8
48K(352*—42K?Z2 +3K*)  1920KZ(7Z*—14K?Z*+3K*) 5ST60K(21Z°—63K2Z*+27K*Z*—K®)
 (KP+ZYP (K*+2%) (K2+22)*
384K2Z2(72*—3K?) 1152K%(21Z2% - 18K2Z* +K*) 11520K2Z(21Z*—-30K2Z2 + 5K*)
O (KP+zZHS T KEP+zy (K?+22)®
3 384K3(9Z% ~ K?) 11520K°Z(3Z* ~ K% 11520K°(33Z* ~ 22K*Z* + K*)
(K2+ZZ)6 (K2+ZZ)7 (K2+ZZ)8
3840K4Z 3840K%(11Z22 — K?) 46080K*Z (112> —3K?)
(K*+2Z%)° (Kt zYy (K? +22)®
3840K° 46080K5Z 40680K3(13Z2—K?)
(ke + 22y K7+ 23y TS
46080K ° 645120K°Z
645120K7

Source: Avery and Watson (1977), Su and Coppens (1990).



Appendix H

Evaluation of the Integrals
Apn 1.1k (Z,R) Occurring in the
Expression for the Peripheral
Contribution to the Electrostatic
Properties

Expression (8.47) for the peripheral contributions to the electrostatic potential
contains the integrals

Ayt .82, R) = J Gy +2.1,(Z, 8)j,(SR)S* dS (H.1)

0

They can be evaluated by substitution of the expressions for Gy.,,(Z, S)
(Avery and Watson 1977, Su and Coppens 1990, Su 1993; see Appendix G) and
Ji(x) (Arfken 1970; see also Table 3.7), and subsequent use of the following integrals
(Gradsteyn and Ryzhik 1965)

* sin (ax) dx bid e—aﬂ
J;, x(x? + [}2)("“) = 2ﬁ(2n+2) [1 - ﬁ Fn(aﬁ)}

[a>0,Re >0, Fy(z)=1, F|(2)=z+2,...,F(2)=0+2mE,_(z)—zF,_,(2)]

(H.2)
j T lsin@odx (DT s
o (x? + )+ D n! 2dz"
fa>0,0<m<n,|argz| < n] (H.3)
f” x™cos (ax)dx _ (=)™ d" (2 112) o= 7
o (x4 )t h n 2dz"
[a>0,0<m<n+1,largz| < x] (H.4)
Some results are
(2 — e RYRZ + 2))
Ao o.0.0(Z, R) = ( (H.5)

2RZ?
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n(2 — e ®[(RZ)* + 2RZ + 2]}

Ao.0.1.1(Z, R) = SR?Z3 (H.6)
n[6 — e RE[(RZ)* + 3(RZ)* + 6RZ + 6
Ao,0,2,2(Z, R) = L LRZ) 2R32(3 ) ]} (H.7)

Alternatively, the integrals in Eq. (H.1) can be reduced to integrals of the
following form (Gradshteyn and Ryzhik 1965)

* xeT M ax) @k TR Gp + T+ L5 — 3v)
o (x2+ KT 2 T(u+ DTG + 1)

. a’k?
XaBl3p +vizp v =yt L

L @+ v —p— D)
T+ 2+ (v - p)f2)

- v+ p a*k?
x1F2<u+l;u+2+¥,u+2— 2p;-4—)

[a>0, —Rev<Rep<2Repu+3] (H.8)
where the hypergeometric function | F,(a; b, ¢; x) is defined as

2 A(a), n
Fy(a; b,e; x) = ngo ——(b),,(c),,n! X

and (@), =ala+ 1)...(a +n— 1), with (@)g = 1.

(H.9)
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The Matrix M~ Relating d-Orbital
Occupancies £; to Multipole
Populations £,,, (Eq. 10.9)

TABLE |.1 Matrix Relating d-Orbital Occupancies P; to Multipole
Populations P, (Eq. 10.9)

Multipoie Populations

d-Orbital
Populations Py, Py, P,. P Pizs P,
P, 0.200 1.039 0.00 1.396 0.00 0.00
P, 0.200 0.520 0942 —093t 1.108 0.00
P, 0.200 0520 —0942 -0931 —~1.108 0.00
P._p 0200 —1.039 0.00 0.233 0.00 1.571
P, 0200 -—1.039 0.00 0.233 0.00 —-1.57
Mixing
Terms Py, Py, - Py Py Py Py -
P 1.088 0.00 0.00 0.00 2.751 0.00
2 yz 0.00 1.088 0.00 0.00 0.00 2.751
P2y 0.00 0.00 —-2.177 0.00 0.00 0.00
P, 0.00 0.00 0.00 =217 0.00 0.00
ziyz 0.00 0.00 0.00 1.885 0.00 0.00
ezixt — 2 1.885 0.00 0.00 0.00 —0.794 0.00
z/xy 0.00 1.885 0.00 0.00 0.00 —0.794
Yziz2 -yt 0.00 —1.885 0.00 0.00 0.00 0.794
- 1.885 0.00 0.00 0.00 —0.794 0.00
2~ y2xy 0.00 0.00 0.00 0.00 0.00 0.00
Mixing
Terms Pyrs Pyy- Pyss Pas- Pyss
P.,,. 0.00 0.00 0.00 0.0 0.00
P, 0.00 0.00 0.00 0.0 0.00
Py 1.919 0.00 0.00 0.0 0.00
P, 0.00 1.919 0.00 0.0 0.00
ziyz 0.00 2216 0.00 0.0 0.00
it —y2 0.00 0.00 2.094 0.0 0.00
Py 0.00 0.00 0.00 2.094 0.00
Py 0.00 0.00 0.00 2.094 0.00
iny 0.00 0.00 —2.094 0.00 0.00
| SN 0.00 0.00 0.00 0.00 3.142
Sonrce: Holladay et al. 11983). Coppens and Becker (1992).
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Appendix J

The Interaction Between Two
Nonoverlapping Charge Distributions

Let T4, ., = (4mey) 'V, V;V, ... V,R™! be defined as a tensor which is propor-
tional to R™“*" symmetric with respect to interchange of any pair of suffixes,
and reduced to zero on contraction, that is, when at least two indices are equal.
The first five T-tensors are

T = (4ney) 'R™! (.1
T, = (4neg) " 'V,R™! = —(4ney) 'R,R 3 (J.2)
T,; = (4ne0) " '3R,R; — R23,5)R™° (J.3)

Toy, = (4meg) " (—3)[5R,R,R, — R*(R,0, + Ryb,, + R,6,,)IR7  (J.4)

Tops = (4160) " '3[35R,RyR, Ry — SR*(R,R;6,5 + R,R, 855
+ R,Ry8;, + RyR, 8,5 + RyRs0,, + R,Rs0,5)
+ R¥(8,58,5 + 84,055 + 8,585, ) 1R ° (1.5)

The electrostatic interaction between two nonoverlapping charge distributions
A and B, consisting of N, and N, atoms, respectively, and each represented by
their atom-centered multipole moments, is given by (using the Einstein summation
convention for the indices «, f, y) (Buckingham 1978)

Ees =

Tq 4+ T(qQitta,; — dita) + T,p(30:9, ; + ’13“1j®ap,i — My ilg ;)

-~z
\MZ

+ T, (% Qaﬂy i %%‘Qapy.i - %ua.iQﬂy.i + %.ua.j®ﬂv,i
7;/},&(961111 Oty
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6K X i 1 1
= —1)
;Z;z:zo 1';0( ) 1.35...21—-D135...2I'=1)

! (U4
...va'B'y'...v’M() .v,iM )

afy.. af'y ...V, j (J6)
in which M}, |, is the Ith multipole moment of atom i, as defined by expression
(7.3).
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Appendix K

Conversion Factors

TABLE K.1 Atomic Versus SI Units

Quantity Symbol  Name or Value® Expression Value

Charge e Miilikan e 1.6021773-1071° C
Mass m, Thomson m, 9.1093897-10" 3! kg
Action h Planck h 1.05457266-107 34 Js
Length aq Bohr h*4ney/m,e®  5.29177249-107 "' m
Energy E, Hartree e’ /4neqa, 43597482107 '8 J

Time to Jiffy dneghay/e? 2418884468107 17 s
Force */dne,ad  8.23872833-107¢ N
Velocity Uy agty ! 2.187691291-10° ms ™!
Momentum Po Dumond mug = hay *  1.99285340-10"** kg ms ™!
Electron density eag 3 1.08121026-10'2 Ccm ™3
Electrostatic potential e/4neoa, 272113961 Cm™*
Velocity of light ¢ 137.036 Bohrjiffy ! ¢ 299792458108 ms ™!
Electric field E Stark e/dneyad 5.1422082-10*' Cm™?
Dipole moment u ed, 8.47835792-1073° C m?

* Value only given if different from 1.

Source: Smith (1982) (Modified).
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TABLE K.2 Conversion Factors
Energy: 1auenergy = | E, = 1 hartree = A%m; 'ag?
=27.211eV = 2 Rydbergs
= 627.509 kcal mol ! = 2625.50 kJ mol ™!
=4.35975-10" " ergs = 4.35975-107 18 J
Length: 1 aulength = 1 bohr = 1 a4 = 0.529177 A
=0.529177-10""°m
Electron density: 1 au electron density = eag? = 6.748315 ¢A ~3
=1.0812:102Cm~*
1eA "3 =0.148185¢ (au)
Electrostatic potential: 1 au electrostatic potential = e/4neya, = 1.889726 eA ™!
=272114V
Electric field gradient: 1 au electric field gradient = eay ® = 6.74833 eA "3
= 9.7173646-10*' cm 3
TABLE K.3 Dipole and Quadrupole (or Second) Moment Conversion Factors®
Dipole Moments
€ a, eA Cm esu D
leag 1.0 0.529177 8.47836-1073° 2.54175-107!8 2.54175
1eA 1.88973 1.0 1.60218-10°2° 4.80321-1018 4.80321
1Cm 1.17947-102° 6.24151-10%8 1.0 2.99792- 101! 2.99792-10%°
lesu 3.93430-10" 2.08194-10'7 3.33564-10712 1.0 1.0-10'8
1D 0.393430 0.208194 3.33564-1073° 1.0-10718 1.0
Quadrupole and Second Moments
e a2 e A? Cm? esu B
lea 1.0 0.280029 4.48655-1074° 1.34504 1026 1.34504
teA? 3.57106 10 1.60218-10°3° 4.80321-1072¢ 4.80321
1Cm? 2.22888-10%° 6.24151-1038 1.0 2.99792- 1013 2.99792-10%°
I esu 7.43475-10%° 2.08194-10%° 3.33564-107 14 1.0 1.0-10%¢
1B 0.743475 0.208194 3.33564-1074° 1.0-1072%¢ 1.0

* Fundamental constants are from Cohen and Taylor (1987) (e = 1.60217733-107'° C, a, = 0.529177249- 10" ' m,
dney = 107 ¢~2, ¢ = 299792458 -10° m 5~ !, esu of charge = 3.33564095-10'° C).

Source: Spackman (1992).



Appendix L

Selected Exercises

Chapter 1
(1) A hydrogen atom is described by the Gaussian radial density function
p(r) = N exp (—«k*ar?)

Derive the scattering factor expression for this atom.

Chapter 2

(1) Evaluate the bias in the isotropic temperature factor of the hydrogen atom
of problem 1.1 as a function of the true « value, if x is arbitrarily set to
1 in a refinement.

Chapter 3
(1) A radial density function of an atom is given by
n+3
rexp (—¢&r
n 12 p(—¢r)

where n > 0. Determine the position of the maximum of this function. For
n =4, which value of ¢ causes the maximum to be at 0.5A from the
nucleus?

(2) The valence scattering factor of an isolated sulfur atom, normalized to
one electron, is given as a function of sin /4 by the following values
(interval in sin 8/4 = 0.05A" 1)

1.0; 0.920; 0.720; 0.484; 0.278; 0.131; 0.040; —0.006
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Derive the valence scattering factor for k = 0.95, using linear interpola-
tion.

Use the normalization factors described in chapter 3 to derive the
coefficients in the expression

VioY1o = Adjo + Bdy,

from the corresponding expression in terms of the wave function normal-
ized spherical harmonic functions.

An experiment is performed to evaluate the deformation density in an
O—O bond in a molecule. Two different reference states are used to
calculate deformation densities. The first is the spherical-atom reference
state (the promolecule density); the second is a prepared-atom reference
state in which oxygen atoms have the configuration

(15)%(25)*(2p.)*(2p,) ' 2p.)’

The O—O bond is 1.200 A long, and directed along the z axis of the
coordinate system of both oxygen atoms. The p-orbital radial functions
of the oxygen atoms are given by [compare expression (3.34])]

(20"

a4z

R(r) = x¥3? (icr) exp (—xlr) with { = 2.227au" ! and k = 0.95

(3.34)

(a) Calculate the difference in electron density between the two deforma-
tion densities at the bond midpoint.

(b) Use the expression of problem 3 to express the difference between the
two deformation densities in terms of the multipolar functions d,,,,.

(5a) Given the Slater-type radial function for the density:

R(ry = k3% 3/(k + 2)'(kr)* exp (—Lxr)
find the Fourier—Bessel transforms {j,> for n =2, 3, 4 and k = 3, 4.

(5b) Evaluate the scattering factors at sin /4 = 0.4 A~1,

(6)

Two Cartesian coordinate systems are related by the rotation

X’ —0.6984 —0.6604 —03188\/X
Y| =] —-02511 -0.1988 09473 ) Y
z —0.6890 0.7241 —0.0306/\Z

(a) Find the Eulerian angles describing the rotation.

(b) In the unprimed system, a pseudo atom has the following dipolar
populations P, = 0.15, P, , = 0.33, P,, _ = 0.05. What is the magni-
tude of the atomic dipole moment if k =1, k =2 and { =32 au™ !,
and what are the dipolar populations in the primed system?
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(c) In the unprimed system, a pseudoatom has the following nonzero
quadrupolar populations

Py =014, P,,, =003, P,, =012, andP,,_ =00l

What are the quadrupolar populations in the primed system?

Chapter 4

(1) Anexperimental curve is fitted by a Gaussian function centered at x,, that is:

_ N [_(x—xo)z]
Y o./2n P 2q°

The variables are g, x,, and N. Derive the expressions for all unique
elements of the least-squares matrix B.

(2) The cyclic molecule of tetrasulfurtetraimide S,(NH), has idealized 4 mm
symmetry, with the mirror planes containing the NH groups. A picture
of the molecule is shown in Fig. L.1. In the crystal, the symmetry of the
isolated molecule is reduced to m due to extensive hydrogen bonding
(Gregson et al. 1988). The charge-density basis set applied is the same as
that used for tetrasulfur tetranitride, S,N,, discussed in chapter 4.

Derive the charge-density parameters required for molecular sym-
metries equal to 1, to m, and to 4 mm by

(a) applying chemical equivalence imposed by the molecular symmetry;
(b) applying both chemical equivalence and local symmetry at each of
the atoms.

FIG. L.1 The tetrasulfurtetraimide S,(NH), molecule.
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FIG. L.2 The M-octaethylporphyrin complex.

(3)! Bis-fluoro germanium octaethylporphyrin C,;4H,,N,GeF, (Ge-OEPF),)
crystallizes in space group I4,/a (Z = 4) (Fig. L.2) with Ge at a site
with 4 symmetry. Figure L2 is a view of M-OEP, where M is the
cation; in Ge-OEPF, the F atoms are in axial positions coordinated to
Ge. In the charge density refinement of the complex, the multipolar
density functions are defined in local coordinate systems on each of the
atoms.

(a) What are the constraints due to (i) crystallographic and (ii) chemical
equivalence?

(b) Which local symmetry would you choose for the Ge, F, N, and C
atoms?

(c) Choose local coordinate systems on each of the atoms such that the
constraints of part (b) can be satisfied.

(d) Which are the nonzero elements of the UY tensor for site symmetries
2 and 47

(e) Which are the nonvanishing multipolar populations for site sym-
metries 2, 4, mm2, and m? Choose the z axis along the main symmetry
axis, noting that m = 2.

! Contributed by C. Lecomte and V. Pichon-Pesme, University of Nancy, France.
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Chapter 7

(1) Derive the expression
®yy = %(—3922+ - %620)

from the definitions of the electrostatic moments.

(2) Hirshfeld’s stockholder partitioning applied to a theoretical density of
hydrogen cyanide, HCN, gives the following values for the atomic charges,
dipole moments, and second moments y_,:

HCN H C N

g (¢) +0.133 +0.066 —0.201
1.(eA) ~0.104 ~0.161 —~0.045
,.(eA?) +0.089 +0.046 ~0.134

The bond lengths in the molecule are: C=N: 1.18 A, C—H: 1.05 A. The
positive z axis is towards the nitrogen atom.

Derive the molecular dipole moment in D, and the molecular second
moment g,, in units of 1074° Cm2.

Chapter 8

(1) Use the net charges for HCN as calculated by the stockholder concept
from the theoretical density (problem 7.2) to evaluate:

(a) the electrostatic potential,
(b) the electric field,

at two points outside the molecule, located on the molecular axis at 2 A
from the H and the N atoms, respectively.
(2) Repeat (1) using all known atomic moments.

Chapter 10

(1) The population parameters on the iron atom (bispyridyl)iron(Il) tetra-
phenylporphyrin were determined from the data on two different crystals.
Results are as follows:



L. Selected Exercises 327

Crystal 1 Crystal 2
Fe symmetry Dy, Dy,
K 1.00 1.00
K’ 0.89(1) 0.90(1)
Pyo(3d) 6.82(4) 7.30(4)
Py 0.02(2) 0.08(2)
Py —-0.21(2) -0.21(2)
Pyss —0.20¢2) —~0.27(2)

Derive the orbital populations in both cases.

(2) The population parameters of the iron atom in FeS, are given below. The
symmetry of the iron site is 3. The z axis is along the 3 axis.

Py = 5.85 (15)
P20 = 0.05 (4)
P,, = 030 (3)

Pyyy = —0.38(3)

Py = 001 (3)

(a) Explain why P,,_ is very small. What does this imply for the local

symmetry of the Fe d-electron density?

(b) Use the results to calculate the diagonal elements of the electric field
gradient at the iron nucleus. Express the results in SI units, What are
the values of the off-diagonal elements of VE?

(c) Derive the d-orbital populations and the associated errors, given the
following correlation coefficients (only the lower triangle of the matrix

is given).
Pyo P,y Py
P 1.0
Py 002 10

P,y 011 003 1.0
Py, 004 004 004
P,,- 001 000 003

Pyys

1.0
0.03

Pysy

1.0

(d) Repeat the previous calculation for the case that y(Pyq, Pyo) = 0.6,

while all other values are unaltered.
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crystal, 102
structure, 101, 109
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alloxan, 181
ampbhiboles, 253
angle strain, 277
angular function, 60
anharmonic temperature factor, 31-37, 248-249
anharmonic thermal
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motion formalism, 31-37, 263
vibrational model, 244
anharmonicity, 36, 245-246, 248, 251, 262
anisotropic
harmonic motion, 29
temperature factor, 29
anomalous scattering, 15, 91
see also resonance scattering
anomalous scattering factor, 15, 91
anthracene, 26, 273-274
antibonding orbital, 216, 228, 257
antishielding, 227
antisymmetrized wave function, 7, 59

approximation
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Born-Oppenheimer, 27
crystal-field, 283, 287
dipolar, 15
form-factor, 7
harmonic, 23
area detectors, 77
aromatic hydrocarbons, 273
aspherical
atom scattering factor, 67, 273-274
form factor, 275
form factor, standard, 277
asphericity shift, 50
atom-centered multipolar functions, 59, 61, 69,
297-306
atomic
asphericity, 274
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basis function, 5t
cross section, 17
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ionization energy, 184-185, 188, 202-207,
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multipole parameter, 275
orbital overlap, 55
orientation, 96, 99
scattering factor, 10, 55-57
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attractors, 131, 134, 138
augmented plane wave (APW) calculation, 261
autoconvolution, 94
azirinidyl, CH,CH,N, 279
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Bader
charges, 134
virial partitioning method, 151
band structure calculation, 194, 264-265
Be—F bond, 270
bent bonds, 277-282
benzene, 138, 141, 159, 161, 163, 185, 195
benzene chromium tricarbonyl, 157, 160
beryllium, Be, 195, 258-261, 265
Bessel functions, spherical, 68-69, 127,
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B,H,, 260
bias, 93, 103, 273-274
bicyclobutane, 280
bicyclo[1.1.1]butane, 281
bicyclo[2.2.0]hexadiene, 280
bicyclooctane, 138
bicyclopentane, 138
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binding energy, 15, 184-185
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[CsHFe(CO),]1,, 240-241
bis-fluoro germanium octaethylporphyrin,
Ci6H4uN,GeF, (Ge-OEPF,), 325
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porphinato)iron(Il), 227, 230, 232,
244-245
(bispyridyl)iron(II) tetraphenylporphyrin,
326
bis(tetrahydrofurane)(meso-tetraphenyl-
porphinato)iron{ll) (t-THF FeTPP),
230, 233-235
Bloch theorem, 28
Boltzmann
distribution, 28
statistic, 34
bond
bending, 277-278
(see also bent bonds)
charge contribution, 250
critical point, 136, 255
ellipticity, 281
order, 136, 238
path, 132, 281
X—H, shortening. 49-50
Born approximation
first, 5-6
second, 13
Born coefficient, 202
effective, 202
Born-Haber cycle, 195
Born-Oppenheimer approximation, 27
bridgehead bond, 280
Brillouin zone, 24-25, 41
broadening, particle size, 8
bulk modulus, 202

carbon dioxide, 208
Cartesian spherical harmonics, 63, 145, 297-
299
catalysis, 211
catalyst, 253
Cauchy principal value, 14, 17
central contribution, 178179, 224, 226
C- - -H repulsion, 279
C—H stretching, 40
characteristic value filtering, 79
charge
clouds, 59
integration, 130
net atomic, 183, 186-191
net atomic reproducing the electrostatic
potential, 186-191
separation, 144
transfer, 50, 55, 96, 129, 267
chemical
constraint, 80-81, 188, 325
deformation density, 99
equivalence, 80, 324-325
reactivity, 165
chlorine, 158, 163
chromium, 261-263, 267
chromium hexacarbonyl, 100, 114
circular dichroism, 233
cis-1,2,3-tricyanocyclopropane, 279
classical Thompson scattering, 4, 12, 16
Clebsch—-Gordan coefficients, 308
Clementi-Roetti Slater-type expansion, 221
closed-shell interaction, 138, 270, 285
Co,CCKCO),, 100
Co;CH(CO),, 100-101
coesite, Si0,, 139, 253-254
coherent scattering, 19
cohesive energy, 195-196, 203, 257
Commission on Charge, Spin and Momentum
Densities, 273
complementary error function, 197
complex spherical harmonic functions, 60
compound nucleus, 19-20
Compton scattering, 257
conditional standard deviation, 78
conducting organic solids, 129
conductivity, 129
configuration interaction, 238
constraint
chemical, 80-81, 188, 325
electroneutrality, 83—-85
F(000), 85
Helmann-Feynman, 85-86
stack, 85
constructive interference, 98
contraction of charge density, 55-59, 67, 221,
255, 270, 274, 277, 282
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quantities, 288
contribution

central, 178-179, 224, 226

peripheral, 178181, 185, 224, 227, 315
conversion factors, 166, 168, 223, 320-321
convolution, 7, 10
convolution approximation, 28

convolution theorem (see Fourier convolution

theorem
CoO, 124
copper, Cu, 264, 266
core
electron scattering, 261, 272
electrons, 55, 261, 265
expansion, 259
-k-parameter, 259
scale factor, 85
-shell expansion, 252
correlation, 79, 82, 111
correlation
coefficient, 73, 77, 112113
energy, 52, 192, 194
CoS,, 216, 228
Coulomb
equation, 166
unit of charge, 320
Coulombic
electronic energy, 196
energy, 192
interaction, 204
parameter, 271
covalency, 214, 253
covalent
bond, 49, 249, 255, 285
bond formation, 96
bonding, 96, 212, 215-216, 267
covariance, 111
covariant
base, 289
quantities, 288
Cr(COy),, 100, 114
cristobalite, SiO,, 253
critical points, 130-132, 140, 255, 285-286
critical-voltage
electron diffraction method, 265
technique, 266
crystal field, 283, 287
crystal field
splitting, 212
theory, 212
cumulants, 32-34, 37, 228
Cu,0,. 226
cusp. 259
cyanoacetylene, 122-123
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cyanogen, 208

cyanogen azide, 279
2-cyanoguanidine, 159, 161--162, 279
cyclobutadiene, 279

cyclobutane, 279, 281

cyclopropane, 277-278, 281
cytosine, 159, 161, 163

cytosine monohydrate, 209

danburite, CaB,Si,0q, 255
De Broglie relation, 18
Debye
approximation, 42
interaction, 203
temperature, 41
unit of dipole moment, 320
decaborane, 271

349

deformation density, 94, 96-97, 100, 109, 119,

123, 126, 149, 251

chemical, 99
covariance of, 114
dynamic, 94, 109

model, 105
fragment, 99-10t
model, 60, 99, 105
standard, 95-96, 100-101, 240

static model, 94, 106, 225, 228, 243-244, 276

variance of, 113

X — N, 101-103

X — X, 103, 260
delocalization effect, 98
density

distribution, spin, 214

for silicon, 251

function normalization, 61

functional, 194, 251

study, 283
theory, 192, 204

matrix, 53

normalization, 300-301

one-electron, 52

prior, 119

procrystal, 10t

promolecule, 122, 154, 174

thermally averaged electron, 22, 126, 154

two-center, 53, 55, 216

two-electron, 53
design matrix, 73, 76
a-deutero-glycylglycine, 82
diamond, 36, 195, 250-252
diamond-type structure, 36, 248
diatomic

halides, 184

molecules, 96, 137, 173
diazirine rings, 279
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dichromium tetraacetate dihydrate,
[Cr{(CH,CO0),]-2H,0, 238-239
dichromium tetraformate, 238
t.4-dicyano-2.3.5.6-tetrafluorobenzene, 71, 86,
106--107
difference
density, 92
electron density map, 82
structure factor, 92
dihydroxyphenylalanine, 139-140
see also L-dopa
diimide, 279
dimanganese decacarbonyl, Mn,(CQO),,, 240
2.3-dimethyi-7,7-dicyanonorcaradiene, 279
(p-dioxo)Mn(HDMn(IV)(2,2'-bipyridyl), (BF,);,

173, 184
dipolar approximation, 15
dipole, 63, 143
—dipole interaction, 203, 206
induced, 203

-moment operator, 152
permanent, 203
—quadrupole interaction, 163
dipole moment
atomic, 50, 323
effect of crystal on, 162, 286
effect of solvent on, 286
instantaneous, 203
molecular, 155-157, 160-163, 190-191,

286-287
dipole moments, 143-144, 146, 153, 160-163,
282, 286-287

discrepancies between X-ray and neutron
positional parameters, 51
discrete boundary, 122-130, 151
dispersion
force, 205
relation, 23
distorted octahedral complex, 212
p.L-histidine, 190-191, 195
d-orbital populations, 217-218, 228-237, 245,
317, 327
dynamic deformation
density, 94, 109
model, 105
map, model, 94
dynamical
matrix, 26
theory, 250

Edgeworth approximation, 33

EFG (see electric field gradient)
eigenparameter, 79

eigenvalue filtering, 79

Einstein summation convention, 288

elastic
neutron scattering, 20
scattering, 7
electric field, 167, 172-173, 178
gradient, 145, 167-168, 172-173, 178,
184-185, 223, 226-227, 327
at the nucleus, 220, 223, 226
electromagnetic theory, 4
electron
affinity, 202
correlation, 192, 210
density, functionals of, 193
diffraction, 265
(see also high-energy electron diffraction)
holography, 172
microscope, 266
momentum distribution, 257
structure factor, 266
electron—electron repulsion, 56, 192, 198-199,
201
18-electron rule, 240
electroneutrality, 124, 274
electrophilic reaction, 255
electrostatic
charge balance, 106
deformation potential, 173
energy, 196, 200-201
interaction energy, 198
interactions, 166, 204, 208, 210
moment, 63, 142-165
potential, 15, 165-191, 194, 198-199, 265, 284,
315
outside a charge distribution, 185
properties, 315
ellipticity, 138, 14t
energy
Is binding, 183
density, 135
-optimized, single-Slater parameters, 65,
3il
relaxation, 20
reorganization, 184
repulsive, 201
equal probability surface, 30, 295-296
error
function, 72, 73, 296
in deformation density, 112
in derived property, 129
in observed density, 111
propagation, 78
ethane, 138
ethylene, 133, 138, 158, 281
ethyleneimine, 279
ethyleneoxide, 279
Eulerian angles, 304, 323
Ewald summation method, 196-197



exchange
correlation, 192
energy, 194
energy, 192
repulsion, 284-285
exclusion principle, 51-52
see also Pauli exclusion principle
extended
Hiickel (EH) calculation, 230, 235
solids, 247-270
covalently bonded, 248-256
external modes, 23, 40, 42
extinction, 87, 211, 258, 265

feldspars, 253
Fermi surface, 257, 264
Feynman diagram, 6, 14
field
cubic, 212
square-planar, 212
tetrahedral, 212
field point, 176
First Born approximation, 5-6
fluorine, F,, 96, 98
forbidden reflections, 249-250
force constant, 4
force constant matrix, 24
formamide, 126-127, 142, 158, 160, 210
form-factor approximation, 7
formic acid, 279
Fourier
convolution theorem, 8, 10, 28,93, 170, 179, 199
transforms, 5, 7-8, 10, 29, 67, 90, 93-94, 169,
197
Fourier—Bessel transforms, 11, 69, 313, 323
fragment deformation
density, 99-101
map, 240
fragment density, 277
framework silicates, 254
free-ion crystal, 200-201
Friedel’s law, 170
{rozen-core approximation, 55, 104, 272
fumaramic acid, 271
functional, 194

GaAs, 172
y-ray
measurements, 250, 258
structure factors, 265
Gaussian
distribution, 295
quadrature, 200
radial density function, 322

index 351

Gaussian-type function, 66
germanium, Ge, 36, 250-252
glycine (see a-glycine)
a-glycine, 118, 120, 271

see also glycylglycine
glycylglycine, 56, 82, 144, 157
goodness of fit, 77, 88-89
Gordon-Kim model, 205, 209
Gram-Charlier

anharmonic parameter, 32-33, 245

distribution, 34

expansion, 31

temperature factor, 32-33, 229

Hamilton method, 83
Hamiltonian, 6, 13, 193-194, 267
harmonic
approximation, 23
oscillation, 24
oscillator, 3, 28, 34, 37-39, 42
wave function, 66
probability distribution, 31
temperature factor, 28-31, 35-36
vibration, 3
harmonics, Kubic, 64, 300-301
Hartree-Fock
atom density, 199
atomic wave function, 70
calculation, 221
energy, 194
LCAO calculation, 261
limit, 53
method, 52
radial dependence, 66
wave function, 85, 151
Hartree-Fock-Slater- X« theoretical calculation,
240
Hellmann-Feynman theorem, 106
hematite, 16
Hermite polynomial, 31-32, 35
Hessian matrix, 131
hexaaquairon(Il), Fe(H,O),, 242-243
hexacontatetrapole, 144
hexacyanobenzene, 60
hexadecapole, 63, 65, 144
HF, 54-55, 99
high-energy electron diffraction (HEED), 265,
267
high-energy electron diffraction critical-voltage
technique, 267
high-order
cut-off, 83
data, 83
refinement, 50, 103-104
method, 11, 94



352 Index
Hirshfeld
formatism, 67. 70, 160
rigid bond test. 47-48, 277
space partitioning, 106
(H,0),, 284
Hohenberg-Kohn theorem, 192-193
Hooke's law, 23
H,PO,, 66, 229
H,Si,0,, 255-256
hybrid
-atom deformation density, 98
atomic orbital, 96
orbitals, 261
hybridization, 96, 258-259, 264, 277
effect, 98
hydrates, 285
see also oxalic acid; Li; natrolite; magnesium
salts
hydrazoic acid, 279
hydrides, first-row, 99
hydro-bis(squarate) anion, 280
hydrogen atom, 20, 56, 86, 103
SDS scattering factor, 56
hydrogen bond, 138, 283, 285-286
very short, 138, 285
hydrogen-bonding, 206, 283-286
hydrogen cyanide, HCN, 326
hydrogen fluoride, 54-55, 99
hydrogen-iike orbital function, 57
hydrogen peroxide, H,0,, 96
hydrogenic orbital, 64-65
(u-2-hydroxy-6-methylpyridine)dichromium,
Cr,(mhp),, 239
hypergeometric
function, 316
series, 70
hyperpolarizability, 282, 286

imidazole, 141, 159, 161, 163, 181, 209

incoherent scattering, 19

independent-atom model (IAM), 10-11, 49, 174,
255

index-picking rules, 80, 217, 302-303

inelastic neutron scattering, 19

information entropy, 115

integral Ay 4, ;, 4 (Z, R), 315

1-3 interaction, 278

interaction between two nonoverlapping charge
distributions, 186, 208, 318-319

interaction Hamiltonian, 6, 13

intermetallic compounds, 36-37, 265-268

intermolecular interactions, 162, 165, 235, 271,
283, 287

internal modes, 23, 26, 40, 42

internuclear repulsion, 198

lonic

bonding, 267

crystal, 138, 195-202

model, 270

scattering factor, 270

solids, 268-270
ionization

energy, 15, 184-185, 202-203, 257

state of, 270
iron(II)phthalocyanine (FePc), 227, 230, 233-235
iron(I)porphyrin (FeP), 233-234, 236
iron(II)tetraphenyl porphyrin, 230
isodensity surface, 277

joint refinement of X-ray and neutron data, 86, 89

k-expansion—contraction parameter, 55-57, 64,
79, 252, 259

w-formalism, 55-56, 57-59, 67, 160

x-refinement, 187188, 190, 201-202, 254, 259

Keesom interaction, 203

kinetic energy, 192-193

kinetic energy density, 135

KN, 59

Koopman’s theorem, 184

Kramers—Kronig transform, 17

Kubic harmonic functions, symmetry-allowed,
303

Kubic harmonics, 64, 299-301

Lagrangian multiplier, 83, 116
L-alanine, 139-140, 156, 174, 181, 190-191, 195
Laplacian, 134-139, 270
Laplacian of the electron density, 134
lattice

energy, 192-210

sum, 199
L-dopa, 139-140, 285-286

see also dihydroxyphenylalanine
least-squares

linear, 72

methods, 73-89

minimization, 93
Legendre polynomials, 180

associated, 60-61, 63, 68—-69
Lennard—Jones potential, 204
Leu-enkephalin, 274
leucite, KAISi, O, 253
Li, 134
LiAlSi, 0y, 253
libration tensor, 43
ligand field theory, 214-216, 228
Li*-H,0, 284



(Li7),-H,0. 284
linear
combination of atomic orbitals (LCAQ)
formalism, 51, 216
least-squares, 72
linearized augmented plane-wave (LAPW)
calculation, 254, 261
linewidth, 13
Li(OH)-2H,0,. 186
lithium tetrafluoroberyllate, Li,BeF,, 269-270
local
coordinate system, 79
density approximation, 194, 267
pseudopotential calculation, 261
symmetry, 80
London dispersion energy, 197
lone pair, 50, 283, 285
lone-pair peak, 104
low temperature data collection, 271
Lowdin population analysis, 121

macromolecular folding, 286
macromolecules, 271, 273, 277
Madelung constant, 195, 202
Madelung constant, effective, 202
magnesium sulfite hexahydrate, 285
magnesium thiosulfate hexahydrate,
MgS,0,-6H,0, 285
magnetic resonance (see nuclear magnetic
resonance; nuclear quadrupole resonance)
magnetic susceptibility, 231
mass absorption coefficient, 17
mass-adjusted displacement coordinates, 26
matrix M~ !, 217-218, 317
maximum entropy method (MEM), 115-119
electrostatic property, as criterion for, 120
two-channel, 118-120
Maxwell distribution, 18
mean-square
amplitude, 45-46
vibrational, 40
displacement, 40-43
melting point, 203
meso-[ Co(hexaazacyclooctadecane)]Cl;, 99
(meso-tetraphenylporphinato)-iron(Il) (FeTPP),
235
metal-ligand bonding, 100, 216
metal-metal bonding, 238-241
metallic solids, 257-265
metals, 257-265
methanol, 278
9-methyladenine, 141, 209
methylammonium hydrogen maleate, 286
methylammonium hydrogen succinate
monohydrate, 285

fndex 353

(u-methylene)bis[dicarbonyi(n>-
cyclopentadienyl)manganese], (u-CH,)
[CpMn(CO),1,, 240

2-methyl-4-nitroaniline, 190, 282, 287

3-methyl-4-nitropyridine-N-oxide, 283

MgO, 172

MgSO;-6H,0, 285

MgS,0,-6H,0, 285

Mg,Si0,, 253

Mg,Si, 04, 253

mica, KAIL(AlSi;0,,}OH),, 253

microwave spectroscopy, 142, 184

minimal-basis-set wave function, 54

MnF,, 118

MnO, 124

model deformation density, 94, 105-106, 244, 276

molecular

crystals, 138, 203, 206, 208, 271-287
dipole moment, 155-157, 190-191, 286-287
recognition, 165

molecular electron density Lego approach
(MEDLA) method, 277

moment

atomic dipole, 148, 150
quadrupole, 148

electrostatic, 142-165

inner, 145

molecular dipole, 155-157, 190191, 286287

octupole, 144

outer, 145

quadrupole, 143~144, 155, 163
of >"Fe, 222-223

second, 151, 155, 163

spherical harmonic
electrostatic, 145
quadrupole, 148

traceless, 144-146, 150-151

unabridged, 144

momentum of

phonon, 24

photon, 24

monopole, 63, 143

Morse equation, 131

mosaic spread, 72

Mossbauer spectroscopy, 178, 184, 221-224

Mott-Bethe expression, 266

Mulliken population analysis, 50, 55, 121, 241

multiconfiguration wave function, 53

multiple

diffraction, 87
scattering, 13
multipolar density function, 60, 62
multipole
analysis, 285
formalism, 59-71, 147, 165, 179, 181
moment, 207
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multiple (contd)
partitioning, 124
population parameter, 67, 70, 216-218, 306,
317

N,, 104
N-acetyl-2,f-dehydrophenyl alanine, 274
N-acetyl-a,8-dehydrophenyl alanine
methylamide, 110, 187, 189
N-acetyl-L-tryptophan methylamide, 110, 274
NaCl, 199
NaF, 200-202
naphthalene, 26, 273-274
natrolite, Na,(Al,5i;0,,)- 2H,0, 253-255
nearly free electron gas, 257
neutrality, 277
neutron
diffraction, 94, 101, 119, 258, 273
scattering, 18
length, 19
velocity, 18
NH,CI, 124
NH,SCN, 59
f'-NiAl, 267-268
NiF,, 118
NiO, 124
NiS,, 216, 228
4-nitroaniline, 286-287
N-(4-nitrophenyl)-L-prolinyl (NPP), 283
nonacarbonyl-y,-chloromethylidene-
triangulocobalt, 100
nonbonded interactions, 185, 203--206, 278
noncrystallographic symmetry, 81
nonlinear optical
properties, 282283
solids, 162, 271
normal mode, 23, 26, 40
normalization
factor, 70, 217
of complex spherical harmonic functions, 60
of density functions, 61, 297-301
of wave functions, 61, 297-299
nuclear attractors, 131, 134, 138
nuclear magnetic resonance (NMR), 184185,
226, 233
nuclear quadrupole resonance, 178
nuclear spin quantum number, 222
nucleotide bases, 286
nucleus—electron attraction, 192, 198
nucleus—nucleus repulsion, 192

observational equation, 73
octahedral complexes, 215, 227-229
octupole, 63, 65, 144

one-electron density, 52
one-particle potential (OPP) model, 34-37, 40,
263
operator
charge, 126
dipole moment, 126
optical
mode, 23
theorem, 16
orbital
exponent, 65, 221, 311
populations, 214, 228
product, 5254, 64-67
orthogonality, 64, 259
orthorhombic sulfur, 82
orthosilicates, 253-254
oscillating
dipole, 4
electric field, 4
oscillator strength, 12
overlap density, 49, 99, 216, 241, 249
oxalic acid, 95, 106-107
oxalic acid
dihydrate, 50, 89, 95, 163, 271, 283
project, 87, 273, 283
a-oxalic acid dihydrate, 50, 89, 95, 106-107, 163,
271, 273, 283

pale, 131
parabanic acid, 180
parallelepiped divisioning, 152
Parseval’s
rule, 196
theorem, 93
particle-size broadening, 8
partition function, 38
partitioning
discrete boundary, 122-130, 151
fuzzy boundary, 121
space, 124, 142, 160
stockholder, concept, 122
stockholders, 160, 162, 326
pass, 131
see also saddle point
Patterson function, 94
Pauli exclusion principle, 95, 203
see also exclusion principle
PbS, 172
p-dicyanotetra-fluorobenzene, 159, 161
see also tetrafluoroterephthalonitrile
peak, 131
Peierls-type metal-insulator transition, 130
Pendellosung fringes, 250
penetration term, 198
peptides, 139-140, 190191, 274-277



peripheral contribution, 178181, 185, 198, 224,
227, 315
permittivity of free space, 166, 223, 266
perturbation Hamiltonian, §
perturbation theory, 226
perturbation theory, second-order, 13
perylene, 273-274
p-Glu-Phe-D-Pro-¢[CN, ]-Me(PPP), 275
phase
contribution, 109-110
-factor difference, 109
of the structure factor, 91, 118
problem, 90
phases, 102, 103, 109
phlogopite, KMg;(AlSi; 0, OH),, 253
phonon
branch, 23, 40
spectroscopy, 19
phonons, 23-26, 40-42
phosphorylethanolamine, 181
photoelectron spectroscopy, 178, 184
photoemission spectra, 265
n-back-donation, 100, 216, 233, 235
n-bonding, 100, 216, 239
n-metal-to-ligand back-donation, 229
pit, 131
plane density waves, 91
plane wave expansion of exp (2riSr), 68, 180
p-nitrophenol, 278
p-nitropyridine-N-oxide, 48, 104-105, 157
Poincaré—Hopf relationship, 131
point-charge
crystal, 196, 198, 201
model, 195, 201
Poisson’s electrostatic equation, 65, 168—169,
207
polar crystal, 171
polarizability, 203, 206
polarizability, hyper, 282, 286
polarization, 85, 162, 226, 284-285
polarization
factor, 6
function, 85
induced, 162, 176, 203, 210, 286
microscopic, 171
of the valence shell, 227
vector, 13, 14
polarized-neutron diffraction, 86, 214
Politzer energy, 195
population analysis (see Mulliken population
analysis; d-orbital populations)
population parameters, 53, 55-56, 59, 63, 70,
216218, 306, 317
positron annihilation measurements, 257
potassium chromate, 16
potassium titanyl phosphate (KTP), 272

Index 3bb

potential
derived charges, 186-191
electrostatic, 15, 165-191, 194, 198-199, 265,
284, 315
summation, ®(0) term in, 170-172
principal component analysis, 79
probability
distribution, 29, 33, 35
ellipsoid, 30, 295-296
procrystal, 171, 173-174
promolecule, 95, 106, 118, 122, 126, 140-141,
150, 154, 174, 323
[1.1.1] propellane, 280-281
propellanes, 138, 280281
pseudoligand, 235
pseudomolecule, 174, 176
pseudopotential calculation, 261
pyridinium dicyanomethylide, 71, 157, 160,
190
pyrite, FeS,, 216, 224, 226-228, 327
pyroxenes, 254

quadruple bond, 238
quadrupole, 63, 143
quadrupole

interaction, 222

Hamiltonian, 222

moments, 158-160, 163-164

splitting, 223
quantum-mechanical harmonic oscillator, 28
quartz, SiO,, 253
quasimoment, 32-33
quinolinic acid, 46, 48

radial
function, 60, 64
maxima, 66
node, 54, 64
radius of best separation, 124
rank of a critical point, 131
reagent
electrophilic, 165, 167
nucleophilic, 165
real spherical harmonic functions, 60, 297-299
product of, 217, 307-310
reference
density, 92-100
state, 95-100
(222) reflection of diamond and silicon, 49
relative weighting of X-ray and neutron data,
87, 89
relativistic scattering factor, 252
requirement of locality, 121, 160
residual density , 92-93
resolution, 91, 93
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reSONAnce
cffect. 292
scattering, 11, 13, 184, 248
see also anomalous scattering
rigid body, 44
rigid-body
analysis, 48
approximation, 43
model, 42-48
motion, 46
rigid-bond test, 47-48, 277
Roothaan-Hartree-Fock wave function,
177
[3] rotane, 279
rotation—-inversion matrix, 291
rotation matrix, 290
rotation of the
complex spherical harmonic function,
305
real spherical harmonic density function,
305-306

saddle point, 131-132
see also pass
sanidine, KAISi;Oq, 253
satellite reflection, 130
scale factor, 81-82, 259
scale factor bias, 83
scattering, X-ray
amplitude of the classical electron, 4, 12,
16
factor, 69, 180, 199
SCF calculation, 54, 284
Scherrer equation, 9
screw
rotation, 43
tensor, 44
SDS form factor for hydrogen, 56
second harmonic generation, 282
second-moment tensor, 151
second-row atom, 66
Seitz notation for symmetry elements, 290
self-energy, 196
series, termination (truncation) effect, 127,
154
shape factor, 153
shape transform, 126, 152
shared interaction, 136
shielding factor (see Sternheimer shielding
factor)
SI units, 168, 320, 327
g-bonding, 100, 214-216, 239
g-donation, 100, 216, 229, 231, 233, 235
g-metal-ligand bonding, 214-216, 229
signature of 4 critical point, 131

silicates, 138, 253-256, 270
silicon, Si, 36, 118, 134, 172, 248-252, 262, 267
single-determinant wave function, 52
singular matrix, 84
Si—O bond, 253-254
Si-—Si bond, 66, 251-253
Slater determinant, 52, 238
Slater’s rules, 57
Slater-type
function, 54, 64, 177
radial function, 70, 323
small-membered ring compounds, 277
sp* carbon atom, 274, 276
sp® carbon atom, 276
sp? oxygen atom, 276
special position, 291
spherical
atom approximation, 86, 273
harmonic functions, 61, 69, 293-294, 297-306
product of, 217, 307-310
ion, 198
spherical Bessel functions, 11, 68-69, 127, 153
spin density, 86, 214
spin-incoherent scattering, 20
spin orbital, 52
squarate, hydro-bis(squarate) anion, 280
square-planar point group, 216
statistical
entropy, 115
mechanics, 257
thermodynamics, 115
steric repulsion, 278
Sternheimer
antishielding factor, 226-227
shielding factor, 226-227
Stewart multipole formalism, 67
stishovite, SiO,, 173, 254
stockholder partitioning, 122-123, 160, 162, 326
strained molecules, 277-282
s-triazine, 102, 159, 271
structure-defining interaction, 208
sucrose, 102-103
suitability factor, 272
sulfamic acid, 56, 156, 160
superconductivity, 211
supershort bond, 239
surface of zero flux, 132133, 135
symmetric Laue geometry, 250
symmetry
-adapted orbitals, 213-214, 218
in reciprocal space, 291-292
operations, 290-294
properties of spherical harmonic functions, 61
restrictions
for spherical harmonic functions, 218,
302-303



of tensor elements, 293
synchrotron
measurements, 246, 250
radiation, 211, 249
systematic absences, 292

tale, Mg4(Si,O,0)(OH),, 253
Taylor series, 74
temperature factor
anharmonic, 31-37, 248-249
harmonic, 28-31, 35-36
temperature scale factor, 87
tensor
clectric field gradient, 221-222
notation, 288-289
second-rank, 293
third-rank, 293
traceless quadrupole, 220
1,2,7,8-tetraaza-4,5,10,11-
tetraoxatricyclo[6.4.1.12- 7 Jtetradecane,
C¢H,,N,O,, 96, 97
tetrafluoroterephthalonitrile, 71, 86, 106—-107,
159, 194
see also p-dicyanotetra-fluorobenzene;
1,4-dicyano-2,3,5,6-tetrafluorobenzene
tetraphenylbutatriene, 271
tetrasulfurtetraimide, S,(NH),, 324
tetrasulfurtetranitride, 80
tetrathiofulvalene-tetracyanoquinodimethanide
(TTF-TCNQ), 129-130
theory of scattering, 3-18
thermal
diffuse scattering (TDS), 23, 86-87, 103, 285
displacements, 30
excitation of reflections, 250
motion, 22-48, 94, 105, 109
thiourea, 156
Thomas—Fermi-Dirac model, 193, 205
+TiAl, 267-268
time-averaged
distribution, 22
electron density, 27
see also thermally averaged electron density
time-dependent
Schrédinger equation, 5
wave function, 6
topological analysis, 130-141, 255, 270, 281,
285-286
torsional oscillation, 48
total
density, 90
reflection, 16
structure factor, 169
transferability of charge densities parameters,
273,277, 282

Index 3b7

transformation of
real spherical harmonic density functions,
303-305
second-rank tensor, 293
transition metal
atoms, 66-67
bonding, 257, 268
compounds, 99-101, 211-245
sulfides, 228-229
tetraphenyl porphyrins, 230-237, 280
transition metal atoms
second-row, 246, 273
third-row, 246, 273
translation tensor, 43
triacontadipole, 144
tridymite, Si0,, 253
Trouton’s rule, 203
truncation effects, 126, 154, 173
two-center terms, 53, 55, 59
two-channel maximum entropy method, 118-120
two-electron density, 53

Unsold approximation, 282
uracil, 142, 157, 27t
urea, 134, 140, 156, 158, 161-162, 209

VAlig.42 37
valence
electron scattering, 104, 271-272
-shell population parameter, 55
valence density
formalism, 67
model, 60, 251
Van der Waals
interactions, 203-204, 208
radius, 125, 130
vanadium, 261-262
variance-covariance
ellipsoid, 79
matrix, 73-77, 79, 84, 111, 129, 154
variance of an observation of unit weight, 77
variational theorem, 193
virial
partitioning, 132-135
theorem, 37, 133, 136
V,Si, 250

water, H,0, 156, 158, 160-161, 283, 285-286

wave function-type normalization, 61, 299

weighting, relative of the X-ray and neutron
data, 87-88

weights, 94

Wigner—Seitz cell, 125
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XD programming package, 229

X — N deformation density, 101-102,
105

X — N method, 101-104

X-ray mirror, 16

X — X method, 103-104

Zeeman effect, 163
zeolites, 253, 255-256

sodium, A, 255-256
zero-point

energy, 38

motion, 22
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